212.6 92RE

Report on Experimental & Pilot

Rehabilitation Programmes

UNIONAL REFERENCE OBLIGHT

Maintenance Division Danida Project Directorate Bhubaneshwar

July 1992

212.6-92RE-9880

Report on Experimental & Pilot

Rehabilitation Programmes

LIRRAD & EXTERNATIONAL REPERSIONS: COLUMN COMPLEX STATEMENTS (FREE STATE n, 2300 w. – Studies 5 5.494 ext 16. . . 10: 212.6 92RE

Maintenance Division Danida Project Directorate Bhubaneshwar

せい

July 1992

Acknowledgements

The Functionality Study of 1987, which was an analysis of the users' perception of hand pumps constructed by this project, was responsible for bringing the phenomenon on user rejection of apparently good wells, to the notice of the project.

The early work of the Drilling Adviser in the project in 1988-89, set a trend in rehabilitation of problem wells, especially in technique and perseverance.

The redevelopment of 50 wells in Delang block in 1989 was accomplished with the wholehearted cooperation of Field Division-Puri of the project and the assistance of consultants.

The Experimental Rehabilitation Programme on 47 wells in 1991 in Delang block was with the joint cooperation of Field Divisions of Bhubaneshwar and Puri who provided the equipment and staff for the programme.

In the Pilot Rehabilitation Programme on 87 wells in 1991-92 in Aul, Chandbali, Delang and Kanas blocks, all three Field Divisions of Bhubaneshwar, Cuttack and Puri assisted.

The staff of AFPRO, New Delhi, especially their Senior Specialist, Mr. L.V.R. Reddy has been involved with supervision of the rehabilitation field work and data analysis from 1989 to 1992. In a similar fashion, the project Laboratory has provided water testing facilities throughout the different stages of the rehabilitation activities.

Access to basic well records was from Water Resources Division and data analysis support came from Data Bank staff.

All this was possible with the unstinting support of the Chief Adviser's Office and the hard work of colleagues in the Maintenance Division, especially the block level Junior Engineers.

This report, therefore, represents the contributions of many people. I am grateful to them all.

Raj Kumar Daw Maintenance Adviser

Bhubaneswar 3rd July 1992

Contents

. .

1.	Summary		•	1
2.	Conclusions & Recommendations	•	•	4
3.	Background	•	•	6
4.	Rehabilitation Experimentation			7
5.	Results from Rehabilitation Experimentation	•	•	9
6.	Data Analysis Methodology		1	0
7.	Pilot Rehabilitation Programme		1	. 3
8.	Results from Experimental & Pilot Rehabilitation		1	6

List of Tables

- ×-

and the second

Table	1	:	Summary of Results of
			Rehabilitation Experiments 9
Table	2	:	Sequence for Assessment of
			Rehabilitation Results
Table	3	:	Assessment of Depth & Overall
			Rehabilitation Results by Blocks 17
Table	4	:	Summary of Overall
			Rehabilitation Results in relation
			to Well Depth Ranges 20
Table	5	:	Summary of all Blocks -
			Analysis of Well Cleaning Methods,
			Depth Range & Rehabilitation Results 21

List of Annexures

Annexure 1 :	Table 1.1 to 1.4 : Distribution of Well Depths, Rehabilitation Depth Assessment & Overall Rehabilitation Results for four blocks Table 1.5 : Distribution of Rehabilitation Success by Depths & Overall Rehabilitation Results Table 1.6 : Summary - Rehabilitation Results in relation to Well Cleaning Methods Table 1.7: Summary Results with Power Overpumping using Submersible Pumps Table 1.8: Summary Results with Manual Overpumping using Tara Direct Actions Pump Components Table 1.9: Occurrence of Sedimentation
Annexure 2 } Annexure 3 }	Rehabilitation data and results of individual wells
Annexure 4 :	Field Work Record Forms & Chemical Treatment

Procedure.

1. Summary:

1.1 The phenomenon of deterioration of water quality in tube wells in the Danida assisted Orissa Drinking Water Supply Project area in coastal Orissa became evident by about 1988-89 and eventually has evolved into a full fledged well rehabilitation programme after a number of experiments and limited trials.

1.2 50 problem wells were rehabilitated during 1989 with limited success after which a systematic experimentation programme was undertaken in early 1991 followed by larger pilot rehabilitation programme in late 1991 to March 1992.

1.3 This report is a compilation of the data the energed from the rehabilitation of 134 wells, some upto 250 m deep, during the Rehabilitation Experimentation activities during March-June 91 and Pilot Rehabilitation activities during July 91-March 92.

1.4 The purpose of the experimental programme was to evolve the simplest rehabilitation techniques in order for this rehabilitation to begin on a larger scale. Based upon the above strategy, 50 wells of Beraboi and Gualipada cf Delang block, Puri District were rehabilitated with chemical treatment, well cleaning, followed by pump reinstallation with non-corrodible punp components. Simultaneously, Rehabilitation Guidelines were drafted for establishing field procedures, chemical treatment and data recording needs. Air lifting was used as the method of overpumping and well cleaning. The results that emerged from the experimental programme were :

- 1. 70.3% wells rehabilitated recorded Fully or Partly Successful results.
- 2. 29.7% wells rehabilitated recorded Doubtful Success or Not Successful results.
- 3. Most of the wells rehabilitated were in the range of less than 50 m deep. The experiments did not extend to deeper wells.

1.5 The Pilot Rehabilitation Programme was substantially delayed in its starting. Also the work area had to change since Delang block did not offer deep wells to attempt more difficult rehabilitation techniques. Consequently, after a review in February 1992, the original target of 150 wells to be rehabilitated was reduced to about 80 wells and the work area was expanded to Kanas, Chandbali and Aul blocks, where deeper wells, low yields, sedimentation, high iron related problems were evident. 1.6 Air lifting remained as the main method of well cleaning in deep wells and was tried with some variations successfully.Manual overpumping was tried using elements of Tara DA pumps. Powered overpumping with submersible pumps was also tried in a few wells. Some other techniques such as water injection, failed. A total of 87 wells were rehabilitated under the Pilot Programme .

1.7 An elaborate methodology for data analysis was formulated which correlated basic well construction records with rehabilitation results and post rehabilitation water quality observations. The final well rehabilitation results were categorised into four main groups:

- 1. Fully Successful FS
- 2. Partly Successful PS
- 3. Doubtful Success DS
- 4. Not Successful NS

1.8 These value judgements were made by evaluation of three parameters : Depth of the well, Yield and Water Chemistry on criteria of Satisfactory or Unsatisfactory achievements.

1.9 In order to arrive at a comprehensive understanding of the results of rehabilitation of 47 wells earlier and 87 wells later, the results of all 134 wells were analysed on the following considerations:

- 1. Geographical by Blocks
- 2. By Well Depths
- 3. By Well Cleaning Methods
- 4. On other special considerations

1.10 The results that emerged were:

- 1. Of 134 wells, 85% were successfully rehabilitated on the criterion of achievement of depth. There were variation between blocks, with Chandbali showing only 25% satisfactory results.
- In comparison to the rather succesful results of restoration of depths, the yields remained low in 23% wells and water chemistry problems persisted in 51% wells, of the 134 wells rehabilitated.
- 3. The overall rehabilitation results showed a completely different picture. FS and PS groups constituted only 30% of the wells. 16% wells were in the DS and significantly 47% wells were in the NS category implying a failure to reestablish, either jointly or independently, yield or water chemistry.

in and a star when the star

- 4. 44.1% wells were less than 50 m deep; about 9% wells were in the 50 m-100 m range; 20.9% in the 100 m-150 m range; 9% in the 150 m-200 m group and 9.7 % in 200 m-250 m depth range.
- 5. FS was 40% to 50% for wells ≤ 50 m and for wells >150 m. In the intermediate range, >50 m to ≤ 150 m, FS was very low. A common feature of wells in the >50 m to ≤ 150 m depth range was that they were concentrated mainly in adjoining areas of Delang and Kanas blocks, indicating an area based hydrogeological problem.
- NS assessments were high, above 50%, for most depth ranges except the shallow range of ≤ 50 m where it was 22%.
- The total occurrence of PS was insignificant at 2.2%, but the DS category could not be ignored with 14.1% occurrence.
- 8. Well cleaning using the Air Lift method was done on 115 wells of which 98 wells (85%) achieved the original well depth to satisfaction. The data indicated that, as a general well cleaning method to restore well depths, this method was quite successful even for deeper wells.
- 9. Ten wells were cleaned with submersible pumping and resulted in 90% satisfaction on depth and 50% for FS. This method was tried generally on deep wells, in the range of 100 m to 250 m depths.
- 10. Manual over pumping with Tara DA pump showed 77.7% satisfaction (7 out of 9 wells) on the depth parameter, but it showed no FS at all.
- 11. Occurrence of sedimentation in wells was quite significant, with 30 wells having discharged noticeable sediments. This group constituted 22.4% of the 134 wells rehabilitated. It would indicate inadequate development at the time of well construction, placement of the well screen in fine sand zones and the possibility of casing failure as problem areas.

2. Conclusions & Recommendations:

From the experience that was accumulated for the experimental and pilot rehabilitation programmes, it could be concluded that:

1. The Second Draft of the Rehabilitation Guidelines formulated in December 1991 were feasible guidelines and could form the basis of a large scale rehabilitation programme. The fact that the project began the large scale rehabilitation programme at an accelerated pace in early 1992 confirms this.

2. There is a need for close monitoring of the project's rehabilitation activities in order to record worthwhile experiences as wells to analyse the characteristics of failed attempts. To this end, the completion of authentic work records at the time of work is an absolute necessity. Also monitoring of physical achievements alone is inadequate. The concentrated efforts required for a high grade of qualitative analysis is also very essential.

3. Post rehabilitation evaluation will lead to the true assessment of the degree of success of the rehabilitation programme. For this purpose monitoring regimes need to be formulated for water quality monitoring and user assessments on a long term basis on limited samples of rehabilitated wells.

While indications are already available that the 4. phenomenon of water quality deterioration can be retarded corresponding improvement in source and that a utilisation is possible, an understanding of the phenomenon of water quality deterioration in this project area is far from being achieved. Long term monitoring, with increasing sophistication will be necessary to develop such an understanding. It will lead to the possibility of formulating the parameters for prescribing a rehabilitation time cycle.

5. The air lift method of well cleaning holds most promise for this project because of its relative simplicity especially for sites accessible by vehicles. However, high pressure compressors are not an absolute necessity and smaller self propelled units should be considered on a trial basis.

6. For inaccessible areas, manual overpumping with Tara pump components should be adopted as a regular procedure. The mechanisation of this system should also be attempted with a small engine or motor as a prime mover.

ŧ.

7. Power based overpumping based on submersible or jet pumps have good potential but present problems of access to sites and sophistication of equipment. This technique should be used only in limited manner for the purpose of establishing bench marks for yield of a small sample of wells which can then be yield tested again at a later date in order to test if rehabilitation need is related to deterioration of well yields.

8. While favourable results have been generally obtained in restoration of well depth by all of the three well cleaning methods tried, the success rate was not so encouraging for the parameters of yield and water chemistry. In 23% wells low yields were encountered and this represents a serious problem in an alluvial area with plently of groundwater. The occurrence of 50.7% wells with non-rehabilitable water chemistry problems compounds the matter further. The implication of these two unfavourable conclusions calls to doubt on the choic of groundwater as the major source option.

9. The issue of "failure criteria" has now to be faced by the project. The Experimental and Pilot Rehabilitation programmes show that rehabilitation success is of the order of 30% and outright failure on either or both criteria of yield and water quality is of the order of 47%. Some of the important questions that need answers are :

What will be the future status of the well "Not Satisfactorily" rehabilitated ?

Should they all be declared failures?

Should only some be declared failures?

On what criteria should wells be declared failures? How can such failures be minimised in future programmes?

Should eventual success of such a water supply programme be judged only when the rehabilitation needs are understood?

10. Implementation of the pilot programme would have been much more meaningful if resource allocation to the programme received the right management priority. The delayed start of the programme and the hurried pace at the later stage were easily avoidable.

3. Background :

3.1 The phenomenon of deterioration of water quality in tube wells in the Danida assisted Orissa Drinking Water Supply Project area in coastal Orissa became evident by about 1988-89 and has led to a number of attempts to rehabilitate such problem wells. The results of such efforts have been documented to some extent.

3.2 The results of rehabilitation of 9 wells, rehabilitated during 1988-89, by chemical treatment and manual operation of a Donkey Pump were reported in July 1990 in a document entitled : Rehabilitation of Problem Wells-Results from Redevelopment by Hand Operated Donkey Pump Air Lift Method and Reinstallation with Non-corrodible Pump Components. These results were not particularly encouraging partly because extremely difficult wells were chosen for rehabilitation by a very rudimentary manual technique.

3.3 During the latter half of 1989, 50 problem wells underwent rehabilitation adopting a sequence of chemical treatment, well cleaning and over pumping by air-lifting and reinstallation of hand pumps with non-corrodible components.

3.4 The results of this programme, also reported in the above-mentioned document, concluded that well cleaning by the air-lift method was more successful in shallow wells (upto 45 m deep) than in deep wells (more than 100 m deep). It showed that non-corrodible pump components such as stainless steel pump rods and PVC riser pipes could be successfully used with the India Mark II hand pump to control the phenomenon of water quality deterioration.

3.5 With the above experience on record, it was proposed that systematic experimentation was needed to identify different methods for rehabilitation of problem wells in the project area.

3.6 While a management level agreement in principle was reached in mid-1990, the actual start-up of rehabilitation experiments had to wait till March 1991 for a number of reasons, mainly, due to delays in equipment availability. This delay, however, provided the opportunity to base rehabilitation planning on the preliminary findings of a Status Survey of hand pumps which was conducted by the Socio Economic Division of the project to assess the nature and extent of occurrence of "problem pumps" as defined by three main criteria : Pump Usage, Water Chemistry and Pump Condition.

3.7 Based upon this preliminary analysis of the Status Survey and as a part of formulation of the new project period from June 91 called the Rehabilitation & Investigation

6

~

Project, a strategy for rehabilitation of problem wells was accepted in early 1991.

3.8 This strategy called for rehabilitation of 50 wells during March to June 91 as a Rehabilitation Experimentation phase to serve as the basis for a larger Pilot Rehabilitation phase of 150 wells in Delang block of the project during July 91 to March 92.

3.9 A preliminary report on the results of rehabilitation experiments was written in July 1991 and periodical progress reports were written on the pilot rehabilitation programme.

3.10 This current report is a consolidated presentation of the results of the Rehabilitation Experimentation activities during March-June 91 and Pilot Rehabilitation activities during July 91-March 92.

4. Rehabilitation Experimentation :

4.1 Strategy : The choice of 50 wells for rehabilitation experiments was based upon the following considerations :

- 1. The simplest rehabilitation technique would be attempted first. As experience was gathered, more complex techniques would be attempted and developed.
- 2. "Saturation Rehabilitation" would be tried, i.e. with a GP as a planning unit, every well in the GP would undergo rehabilitation if the occurrence of water quality problems was found to be wide spread, i.e., in 50% or more of the wells in the GP.
- 3. The purpose of the experiments would be to look for rehabilitation methods which were relatively simple and where a high success rate was expected. This would allow Field Divisions to begin large scale rehabilitation at an early stage on wells that could successfully rehabilitated with relatively simpler techniques.
- 4. Field Divisions would provide man-power and equipment, Chief Adviser's Office would finance the experiments. Maintenance Division would manage the experimentation activity. This would allow Field Divisions the time necessary for preparation to undertake large scale rehabilitation at a later stage.

4.2 Choice of Experimental Work Area :

4.2.1 Based upon the above strategy, Beraboi GP with 37 wells mostly in the 30 m to 40 m depth range was the first choice since there was also a high occurrence problems of odour and particles in these wells. Beraboi therefore represented a GP with shallow wells with a high occurrence relatively simple water quality problems that was expected to be remedied fairly easily.

4.2.2 The choice of the second GP was Gualipada, where there were 29 wells equally distributed in the 30 m to 40 m depth range and 100 m to 150 m depth range. As compared problems of only odour and particles in Beraboi, the wells of Gualipada also showed a fairly high occurrence of high iron content and salinity related problems. Therefore, Gualipada posed greater rehabilitation problems than Beraboi both in well depth and water quality and would present the trial ground for more complex rehabilitation methods.

4.3 Well Treatment Methodology :

4.3.1 Application of sterilant chemicals followed by cleaning and overpumping by air lifting with compressed air was the basic well cleaning method. Later, in deeper wells or in wells where air-lifting failed, other means of over pumping and back washing would be attempted.

4.3.2 Upon successful well cleaning, reinstallation of hand pumps would be done by using 40 mm PVC riser pipes, SS rods and modified IM 2 cylinders in Beraboi GP and IM 2 Solid Link Suction pumps in Gualipada GP. These pump choices were made since adequate stocks of both these pumps were available and favourable experience had already been gained using these pump configurations.

4.3.3 Draft Rehabilitation Guidelines for well rehabilitation were prepared for field procedures, chemical treatment and data recording needs. Later these underwent modifications based upon experience from usage. Field work record forms formulated in the Guidelines and details of the chemical treatment procedure are given in <u>Annexure 4</u>.

4.3.4 One compressor, an Atlas Copco VT6 was placed at the disposal of Maintenance Division to execute the work. Eventually, air lifting after chemical treatment was the only method used for well cleaning and over-pumping in both Beraboi and Gualipada GPs. No other rehabilitation methods were experimented with at this stage.

5. Results from Rehabilitation Experimentation :

5.1 The results from the rehabilitation experimentation phase by chemical treatment, cleaning and over-pumping by air-lifting and reinstallation of pumps with non-corredible elements in Beraboi and Gualipada GPs are as follows and are summarised in Table 1.

Rehabilitation	Berabo	1 02	Gualip	ada GP	Totals		
Results Assessment	Nos	•	Nos	\$	Nos	:	
Fully Elessful	7	22.5	5	37.6	13	:7.7	
Partly Successful	15	43,4	ş	31.2	20	42.6	
Doubtfil Success	ß	15.9	4	25.0	12	2515	
Not Successful		3.2	1	6.2	2	4.2	
Total Wells Cleaned	11	1:3.0	16	100.0	47	103.0	
Wells 5 t Cleaned	5		13		19		
Total Wells in GP	37		29		66		

Table 1 : Summary of Results of Rehabilitation Experiments

5.2

2 The following conclusions are evident from Table 1:

- 1. Out of the total of 66 wells in the 1 GPs, rehabilitation was attempted on 47 wells.
- 2. 70.3% wells rehabilitated recorded Fully or Partly Successful results.
- 3. 29.7% wells rehabilitated recorded Doubtful Success or Not Successful results.
- By itself, Not Successful results, or ostright failure were recorded in 2 out of 47 or 4.2% wells. Both were unsuccessful on the criterion of yield.
- 5. Out of the total of 66 wells in the 2 GPs, 13 wells were not rehabilitated. Out of these 19 wells 5 wells were defunct wells, not yielding water.
- Therefore, 33 out of 47 wells cleaned represented an acceptable (Fully+Partly) level of technical success, 12 wells were in an uncertain group and in 8 out of 66 wells (12%) rehabilitation failed.

- 7. Six wells (5 from Beraboi, 1 from Gualipada) yielded appreciable quantities of sand and pebbles during cleaning. Three of these wells were been graded as "Partly Successful" and three wells were considered as "Doubtful Success". Hydrogeological opinions were needed on these six wells to determine the cause of sand and pebble occurrence. Sample of the sediments were collected and stored. These wells would have to considered as failures if casing failures were confirmed as the cause for sand occurrence.
- 8. The deep wells in the group were virtually omitted from the process of rehabilitation.

6. Data Analysis Methodology :

6.1 Basic data of wells identified for rehabilitation were accessed from the project well construction records. The water chemistry observations of the Status Survey provided a bench mark for water quality. The two other main areas of observation of the Status Survey, pump usage and pump condition were kept in view for the rehabilitation work but were not considered of primary importance.

6.2 The final well rehabilitation results were categorised into four main groups:

1.	Fully Successful	- FS
2.	Partly Successful	- PS
3.	Doubtful Success	- DS
4.	Not Successful	- NS

6.3 These value judgements were made by evaluation of three parameters monitored before, during and after well rehabilitation. The 3 parameters used to judge the degree of success of well cleaning were :

1. Depth (Dp) : Was the original well depth reached ? Original well depth was considered as Satisfactorily achieved (S), if the post-rehabilitation well depth was recorded to have reached to not less than 4 m of the original recorded well depth. The reason for setting this condition has been explained in detail in the Rehabilitation Guidelines.

2. Yield (Y) : Was the well yield "adequate" after cleaning?

Yield was considered to be as adequate if the well yielded 15 lpm which was a slightly higher yield than the IM 2 pump which ideally yielded 12 lpm. However, a subjective judgement of "Satisfactory Yield" (SY) and "Low Yield" (LY) was considered acceptable in the absence

of suitable equipment to assess yield accurately in most cases .

3. Water Chemistry (Ch) : Did the water quality improve after well cleaning?

Water chemistry was considered to have improved if there was a favourable change in water quality between pre and post rehabilitation water chemistry observations. These changes were assessed for aesthetic (As) parameter of odour, colour, turbidity and particles and for chemical (Ch) parameters of pH, Electrical Conductivity (Ec), dissolved Iron content (Fe) and total Chlorides (Cl). These 8 parameters had been observed in the Status Survey and retained in post rehabilitation observations.

6.4 As mentioned earlier, the Status Survey - SS data on 8 parameters of water quality were taken as the bench mark for comparison. These 8 parameters were coded as follows:

Aesthetic Parameters	:	Odour Colour Turbidity Particles	O C T P			
Chemical Parameters	:	pH Conductivity Dissolved Iron Total Chlorides	Lo Ec Fe Cl	(or	Hi)	Нq

6.5 If any of the above parameters were found beyond the acceptable limits, as per IS:10500-1983, the parameter codes were noted for comparison of pre and post rehabilitation behaviour. In <u>Annexure 2</u> and <u>Annexure 3</u>, where codified rehabilitation data has been presented using the above codes, this comparison has been shown under the water chemistry column against Status Survey-SS and Post Rehabilitation-PR symbols.

6.6 The comparison of the behaviour of the eight water quality parameters before and after rehabilitation was categorised into three degrees:

- 1. Satisfactory (S) change in water quality was considered to have occurred if all 8 parameters were within acceptable limits after rehabilitation. This has been shown as PR : OK.
- 2. Unsatisfactory change of water quality, to a lower level of problem, was the concluded if post rehabilitation water quality showed problems in any of the aesthetic parameters, i.e. if colour and turbidity were unacceptable or if odour, taste or particles were present after rehabilitation. This

condition was symbolised by US(As) and were denoted by PR : O,C,T or Pr. Additionally if post rehabilitation values of electrical conductivity was in the range of 3000 to 4600 micro siemens, this was marked as PR : Ec* to denote a potential problem in the Total Dissolved Solids - TDS, a chemical parameter which could be estimated from Ec values (permissable limit of TDS is 3000 mg/l which is equivalent to Ec = 4615 micro siemens).

3. Unsatisfactory change of water quality, to a higher level of problem, symbolised by US(Ch), was concluded if post rehabilitation water quality showed problems in any of the main chemical parameters, i.e., if pH, Ec, Fe or Cl were in the unacceptable range after rehabilitation. These were denoted by PR : Lo/Hi pH, Fe, Ec or Cl.

By this method, each of the 3 parameters, Depth, 6.7 Yield, Water Chemistry respectively, could be classified into Satisfactory or Unsatisfactory post rehabilitation results in the detailed individual well rehabilitation data complied as <u>Annexure 2.</u> Similarly in <u>Annexure 3</u>, where the rehabilitation data is presented in a slightly abbreviated form, values of S and US, could be assigned to each well under Dp, Y & Ch columns. Each combination of S or US for Dp, Y and Ch was then computed into an overall assessment of rehabilitation into four categories - FS, PS, DS and NS (Fully Successful -Partly Successful -PS, Doubtful Success - DS, FS, Not Successful - NS). Annexure 3 & 4 also indicate this overall assessment for each well.

6.8 Inability to arrive at S or US due the lack of data occurred in a few cases and led to the need of the category Not known - NK in the assessment of each parameter and in the overall assessment of rehabilitation results.

6.9 Table 2 below summarises the above analytical methodology used to process the rehabilitation data, by which each of the three parameters, Depth, Yield and Chemistry have been categorised in all possible combinations : Not known, Satisfactory and Unsatisfactory possibilities, to arrive at the overall rehabilitation result of Fully, Partly, Doubtful or Not Successful verdict for each well.

Tab]	le	2	:	Sequence	for	Assessment	of	Rehabilitation	Results
------	----	---	---	----------	-----	------------	----	----------------	---------

Parameter	: Depth	Yield	a ci	hemistry	R	ehab.
		NK		NK/S US(As)		NK DS
			L	US(Ch)	<u></u>	NS
				NK		NK
	s —	s		S		FS
	-		}	US(As)		DS
	-		L	US(Ch)	······································	NS
		US	<u></u>	NK/S/US		NS
			·	NK/S	······	NK
		<u> </u>		US(AS)	- <u></u>	DS
			L	US(Ch)		NS
			<u> </u>	NK		PS
	US	S		S		PS
				US(As)		DS
			<u> </u>	US(Ch)		NS
		us us		NK/S/US		NS
	•			NK/S		NK
		Г NК		US(As)		DS
			Ļ	US(Ch)		NS
			r	NK		NK
	NK	S		S		\mathbf{PS}
			<u>}</u>	US(As)		DS
			L	US(Ch)		NS
		L US		NK/S/US		NS

6.10 As will be seen from Table 2, satisfactory results in both Yield and Water Chemistry parameters were a precondition for a well to come into the Fully (FS) or Partially (PS) Successful categories of overall rehabilitation assessment. Similarly, US(As) was common to the category of Doubtful Success (DS) after the precondition of Yield = NK or S. To that extent, Depth, as an evaluation parameter, was given secondary importance to Yield and Water Chemistry.

7. Pilot Rehabilitation Programme :

7.1 Background

7.1.1 As has been mentioned earlier, the Rehabilitation Experimentation phase during March to June 91 was to serve as the basis for a larger Pilot Rehabilitation phase of 150 wells in Delang block of the project during July 91 to March 92.

7.1.2 In comparison to the Rehabilitation experiments, it was the clear intention of the Pilot Programme to try rehabilitation in deeper wells with more complex problems. 7.1.3 Accordingly, by the end of 1990, as part of the planning process for the Rehabilitation Experiments and Pilot programme and as a part of the formulation of the new Investigation & Rehabilitation Project phase, identification of resources was completed. Lists were prepared for equipment available within the project so that such equipment would be available by June 1991. These were items such as high pressure and normal range compressors, submersible pumps, jet powered reciprocating pumps, engine pumps, operated generators, vehicles centrifugal operating pumps, and accessories.

7.1.4 Since none of this equipment was made available to Maintenance Division by June 1991, the Pilot Rehabilitation Programme could not start on schedule with the new Rehabilitation & Investigation project phase. Accordingly, a proposal to hire suitable external equipment was formulated in July 1991 but was not approved till December 1991 when it became obvious that the Pilot Rehabilitation Programme was far behind schedule.

7.1.5 During September 91, in the absence of the necessary equipment, trials were started with manual overpumping in wells over 100 m depth, using Tara Direct Action pump components. Details of this technique and the results form its application have been discussed in detail later in this report.

7.1.6 Also, a high pressure compressor was available in late 1991 and trials with over pumping by air lifting in deep wells was started. The technique and results have been presented later.

7.2 Choice of Pilot Programme Work Area :

7.2.1 Initially it had been expected that Delang block would provide a representative cross-section of problem wells in the project area. However, a more thorough examination of basic well records, maintenance and pump usage monitoring information indicated that wells beyond 150 m depth were rare in Delang and that deeper wells in other blocks had problem reports that were not common to Delang.

7.2.2 After a review of the progress of the pilot programme in February 1992, the original target of 150 wells to be rehabilitated was reduced to about 80 wells and it was agreed that the pilot programme activities would be extended to a limited number of wells in Kanas, Chandbali and Aul blocks, where deeper wells, low yields, sedimentation, high iron and high chlorides related problems were evident.

7.3 Well Treatment Methodology :

7.3.1 The process of application of chemicals in the pilot programme remained the same as outlined earlier and as has been detailed in <u>Annexure 4</u>.

7.3.2 Rehabilitation Guidelines formulated in December 1991 were operationalised. Three main overpumping techniques outlined in the Guidelines were tried:

- 1. Air lifting in deep wells was tried by a gradual increase in operating pressure, with simultaneous lowering of the air line, in order to lift progressively deeper columns of water. This method was used successfully in wells with the air line going to about 140 m with compressors delivering air starting at about 4 bar and going upto 10 bar pressure. An Elgi compressor was used initially and later an Atlas Copco compressor was used for this work.
- Manual overpumping was tried using the below-ground elements of Tara DA pumps, both in the shallow wells (upto 40 m depth range) and in deeper wells (100 m to 150 m range).
- Powered overpumping was tried with hired equipment and external personnel. This procedure could not be systematically and extensively tried because of a number of administrative and technical considerations.

7.3.3 In the process of focusing on the three abovementioned methods of overpumping, a few unsuccessful wells cleaning techniques were also recorded.

 Air lifting with a combination of a 25 mm ND eductor pipe and a 8 mm dia. air hose, both lowered in the upper well casing, did not discharge much water. This was tried on three wells with no reasonable achievment of overpumping. This technique has been discussed in detail in the Rehabilitation Guidelines.

^{1.} After initial trials with manual overpumping with Tara pump components in Delang under the pilot programme, more intensified application of this method was successfully tried in much deeper wells (in the range of 209 m depth) in Chandbali block under the regular rehabilitation implementation programme. The progress of this effort was followed for a short period for some misor adjustments in field practices, but the results have not been reported in this document.

2. Water injection for backwashing in low yielding wells using a change-over manifold so as to alternate water injection with compressed air application or to propel water down the air line with compressed air. Eventually, in low yielding wells, water was poured into the well casing after shutting off the air line in order to achieve some extent of cleaning and flushing with external water.

3. Moving the water column up and down in wells by rapidly alternating release and shutting off compressed air supply so that the rising and falling water column would provide a surging action in the well screen area. This method was tried in low yielding wells in Kanas. While some removal of fines occurred, the yields did not show any noticeable change.

7.3.4 Data recording was in Field Work Record forms used earlier (<u>Annexure 4</u>) and data presentation has been done in <u>Annexures 2 & 3</u> following the methodology developed for the experimental programme.

7.3.5 Reinstallation of hand pumps were IM2-PVC-SS, IM2-SU and IM2-Tara configurations. In a number of cases, the IM2-SU pump showed depletion after reinstallation confirming low yield in those wells. Such wells were then converted into IM2-PVC-SS pumps. Pump reinstallation details have been recorded in <u>Annexures 2</u>.

8. Results from Experimental & Pilot Rehabilitation :

8.1 Before presenting the results of the Pilot Rehabilitation Programme, a few preliminary comments are necessary:

1. Due to an extremely delayed start of the pilot programme, only 87 wells were rehabilitated against a target of 150 wells, or a mere 58% achievement of the physical target of the Plan of Operation. This is indicative of the priority that this activity recieved in the project.

2. In order to expand the data base for more representative results and since the experimental and phases were complementary activities pilot а consolidation of data was done. Consequently, the results 47 wells rehabilitated under the Rehabilitation of Experiments have been assimilated with the results of 87 wells of the Pilot activities and the data analysis has been done together.

16

ومحصوب معدد فتحج والمعجد والم

3. The lack of equipment and resources for the initial part of the pilot programme led to a situation where the external agency engaged for a small part of the programme from Jan. 92, virtually became the programme implementing group. The delay also resulted in undue pressures of achieving quantitative targets against developing difficult qualitative techniques for cases of rehabilitation. As a result, during the period 15th. Feb. 31st. March 1992, a total of 53 wells had to to rehabilitated in 45 days. This seriously affected the innovative objectives of the programme. To that extent, the results of the pilot programme were indadequate and compromised to some extent.

4. Since the pilot programme was conducted in different become an additional blocks, geography analytical the parameter for overall interpretation of rehabilitation results. This created unexpected demands in logistical arrangements during the field work and in analytical requirements later. As can be seen from the data in <u>Annexures 2 & 3,</u> each block exhibited characteristics of its own. While this made the data more representative in an overall context of the project area, the data base became fragmented and was inadequate especially for Chandbali and Aul blocks, where relatively smaller number of problem wells were rehabilitated at a very rapid pace.

8.2 With the above issues in view, the results of the experimental and pilot rehabilitation programmes have been analysed under the following broad areas :

- 1. Analysis of results by Blocks
- 2. Analysis of results by Well Depths
- 3. Analysis of results by Well Cleaning Methods
- 4. Analysis of results on other considerations

8.3 Analysis of Results by Blocks:

Table 3 : Assessment of Depth & Overall Rehabilitation Results by Blocks

51. Mo.	Block	Nos. of Wells	Rehab. S	Depth Asse US	ssbeat NK	Overall PS	Rehab PS	ilitatı DS	on Ass NS	essient N
1.	Aul	15	13	1	1	5			10	
2.	Chandbali	16	12	4		10			6	1
3.	Delang	81	70	6	5	22	3	17	32	1
4.	Kanas	22	19	1	2	1		4	15	2 🔺
5.	Total-Nos. - N	134 1003	114 85%	12 ?%	8 6%	38 28%	3 23	21 163	63 471	9 7 %

8.3.1 From the above table it will be seen that:

8.3.2 A total of 134 wells were rehabilitated out of which 85% were successfully rehabilitated on the criterion of achievement of depth. Unsuccessful depth achievement was generally low in all blocks except in Chandbali where 4 out of 12 wells (25%) showed this problem.

8.3.3 In comparison to the relatively successful depth results, the overall rehabilitation results showed а completely different picture. Fully and Partially Successful groupings constituted only 30% of the wells. 16% wells were in the Doubtful Success group because problem of water aesthetic quality on parameters continued after rehabilitation. Significantly, 47% wells were in the Not Successful category implying a failure to reestablish, either jointly or independently, yield or water chemistry (on major chemical parameters).

8.3.4 Blockwise summary tables are presented for each of the four blocks as <u>Tables 1.1 to 1.4 in Annexure 1</u>. These tables gives details of distribution of depths of wells rehabilitated and corresponding results for each depth group. Along with the detailed well data in Annexures 3 & 4, the following blockwise conclusions emerge:

8.3.5 Aul block

- 15 wells were rehabilitated
- Depth range : 130 m to 260 m
- 5 wells FS (33%), 10 wells NS (77%)
- 7 wells NS on account no change in Fe
- 3 wells NS on account of low yield
- Powered overpumping was successful in restoring depth and yield in 4 wells
- Air line overpumping was attempted on 12 wells, in which of 8 cases succeeded, 3 failed because of low yield, 1 failed initially (sand occurrence) and succeeded later with power overpumping.

8.3.6 Chandbali block

- 16 wells rehabilitated
- Depth range : 120 m to 260 m
- 10 wells FS (62.5%), 6 wells NS (37.5%)
- 1 well NS on account of post rehabilitation Fe
- 5 wells NS on account of low yield
- Powered overpumping successful in 2 wells and failed in 1 well (after failure by air line)
- Air line overpumping was done 13 wells, in which of 9 cases succeeded, 4 failed on depth and yield
- Strong possibility of casing failure in 2 wells because of the occurrence of coarse to medium sand

∕ ×

, etc. Etta hartakkoù i Erre e

- 8.3.7 Delang block
 - 81 wells rehabilitated
 - Depth range : upto 50 m 59 wells
 - 50-100m 2 wells

100-150m - 14 wells

- Not known 5 wells
- 24 wells (29.6%)wells FS, 3 (3.7%) PS, 15 (18.5%)DS, 32 (39.5%) wells NS
- Most wells belong to 5 Gram Panchayats and each GP shows its own pattern of success or failure.
- Abahayamuki Ramachandrapur GP 7 wells, 100 m to 130 m depths, all by air line, 6 US on chemical parameters of Ec, Fe and Cl.
- Beraboi GP 31 wells, mostly upto 50 m depths, all by air line, reoccurrence of odour and particles seen, noticeable occurrence of coarse sediments, 55% outright FS.
- Chainpur GP 17 wells, upto 50 m depth, all by air line. No FS at all, 13 cases of NS, persistent problems of low pH, Fe, low yield, depletion, sediments.
- Gualipada GP 20 wells, 17 by air line, 2 by manual overpumping, 1 by power overpumping. 18 wells upto 50 m depth, 3 wells in the 100 m to 150 m range. 8 FS, 1 PS, 4 DS, 7 NS. Main problems in low pH, Ec, Fe and Cl.
- Sri Purushottampur GP 6 wells, all by manual overpumping, all successful on depth and yield parameters. However, 3 NS, 3 NK. Problems in Ec and Fe.

8.3.8 Kanas block

- 22 wells rehabilitated
- Depth range : 80 m to 100 m
- 1 well FS (9.1%), 15 wells NS (68%)
- 9 wells (41%) with low yields
- All 22 well cleaned first by air line, repeat cleaning on 2 wells with power overpumping
- 1 power overpumping successful, 1 failure.

8.4 Analysis of Results by Well Depths:

8.4.1 Table 4 below gives the summary of the distribution of rehabilitation results (depth and overall) by depth ranges. A more detailed analysis is presented in <u>Table 1.5 of</u> <u>Annexure 1</u>. From Table 4 it is seen that:

- 44.1% of the wells were less than 50 m deep.
- 20.9% wells fell in the 100 m to 150 m range.
- About 9% wells fell in each of the 3 groups of 50 m 100 m;150 m-200 m and 200 m-250 m depth ranges.

1.5

- FS was assessed in the range of 40% to 50% for the shallow (≤ 50 m) and deeper depth ranges (> 150 m). In the intermediate ranges (>50 m to ≤ 150 m) FS was very low. A common feature of wells this depth range was that they were concentrated mainly in adjoining areas of Delang and Kanas blocks, indicating an area based hydrogeological problem.
- By and large, NS assessments were high, above 50%, for most depth ranges except the shallow range of ≤ 50 m where it was 22%.
- The total occurrence of PS was not very significant at 2.2% but the DS category was a significant group with 14.1% occurrence

51.	Well Depth	Nos. of	1 for	Overall Re	habilitati	os Result-	Nos. 6 P	ercentages
50.	kange	Wells &	Kesults	PS	PS	DS	NS	NE
1.	Not known	78 6.01	1003		2 258		3 37.51	3 37.58
2.	≤ 50m	59 44.1 3	1001	24 40.73	1 1.7%	15 25.41	13 22.01	6 ; 10.21
3.	> 50m & 5100m	12 9.03	1003			2 16.78	10 83.3%	
4.	>100m & \$150m	28 20.9%	100%	2 7.13		2 7.13	23 82.23	1 3.6%
5.	>150 8 & \$200 8	12 9.0%	100\$	6 50.03			6 50.0%	
5.)200m & \$250m	13 9.78	100%	5 38.51			8 61.5%	
7.)250m & \$260m	2	100%	1 50.0%			1 50.0%	- 1
	Total of all wells	134 100%	100%	36 28.43	3 2.2%	21 14.13	65 48.6 %	9. 6.78

Table 4 : Summary of Overall Rehabilitation Results in relation to Well Depth Ranges

20

8.5 Analysis of Results by Well Cleaning Methods :

8.5.1 The analysis of rehabilitation results in relation to the method of well cleaning is presented in Table 5 below. Tables 1.6 to 1.8 in Annexure 1 gives further details in this regard.

Table 5 : Summary of all Blocks - Analysis of Well Cleaning Methods, Depth Range & Rehabilitation Results

Sl. No.	Well Cleaning Method & Depth Ranges	Nos. Rehab. Depth of Assessment			Overa	Overall Rehabilitation Result					
		Wells	S	DS	BX	PS	P\$	DS	NS	RK	
1.	Air Lift	115	98	9	8	34	3	19	53	6	
2.	Power overpumping with submersible pump	10	9	1	_	5		1	5		
3.	Manual over pumping with Tara DA pump	9	٦	2	-				5	4	
	Overall Totals	134	114	12	8	39	3	19	64	9	

8.5.2 Air Lift:

As can be seen from Table 5 above, most of the wells 1. were cleaned using the Air Lift method. Of the 115 wells cleaned by this technique, 98 wells (85%) achieved the original well depth to satisfaction. From Table 1.6 in Annexure 1, it is apparent that this rate of satisfaction was common to all well depth ranges upto 250 m depth. This would imply that, as a general well cleaning method for reestablishing well depth, this method was quite successful even for deeper wells. This is an important very conclusion since earlier experiences were unfavourable for deeper wells beyond 45 m. However, the overall success rate with this method was not very high at FS for 34 wells (29.5%).

2. Theoretically 1 bar air pressure should be able to displace a water column of 10 m. However, air lift applications in the field were able to lift water columns from the 140 m depth range with a 10 bar compressor by a gradual increase in operating pressure from 4 bar tg 10 bar while the air line was gradually lowered from 30 m to 150 m. Probably the inertia of a moving water column allowed a lower pressure to lift water from a greaterthan-theoretical depth. 3. Later it became apparent that high pressure compressors were actually not needed and that if yields were adequate, the overpumping with air lifting could easily be achieved with the air line at 30 m. The introduction of the air line into the lower well casing of 50 mm diameter actually posed a problem in a number of wells.

4. Alternating air lifting with water injection was not successful in a low yielding well in Gualipada GP. This well ran dry after the air line evacuated the accumulated water and there was the fear of a casing collapse. However this did not occur and the well continued to function as a low yielding source.

5. Surging was tried with compressed air by moving the water column up and down in the well by rapidly alternating air discharge and shutdown in low yielding wells in Kanas. But this did not produce any significat change in yields. Time did not permit the application of polyphosphates in these wells to see if they wells could be eventually improved by different approaches.

8.5.3 Power operated overpumping with Submersible pump:;

1. Ten wells were cleaned with this method with 90% satisfaction on depth consideration only and 50% FS on overall considerations. From <u>Tables 1.6 and 1.7</u>, it will be seen that this method was applied to wells in the range of 100 m to 250 m depths. Overpumping by Submersible pumps was more successful, 50% FS against 29.5% FS for air lift in deeper wells. However, such a conclusion is based on the results of 10 wells only and might not be a correct conclusion.

8.5.4 Manual over pumping with Tara DA pump :

This technique evolved from a strange coincidence 1. when Tara pumps were first installed in the project in 1990 on apparently good wells yielding clean and clear water. Immediately upon installations of Tara pumps, most of these wells yielded dirty water and sediments for a considerable number of days before they stabilised to yielding clean water again. Attempting to analyse this phenomenon led to the conclusion that the bottom rubber seat of the Tara pump riser pipes provided a very good seal, cutting off the upper well casing and establishing a direct suction link from the well screen area. This resulted in a high velocity of water in the smaller pipe system of the lower well casing continuing to the Tara riser pipes which carried the sediments up and out. The high discharge design of the Tara pump also contributed to very effective manual overpumping.

and the second second

2. The search for a suitable manual method was also important, considering that compressors would not be able to reach many sites and submersible pumping equipment could reach even fewer sites.

3. A third consideration was that the Tara system was also highly adaptable to be converted into surge plunger applications.

4. The use of the Tara pump components in overpumping has been treated in detail in the Rehabilitation Guidelines and the results from the field trials are summarised in Table 5 earlier and shown in detail in Table 1.6 and 1.8 in Annexure 1. While this method showed 77.7% satisfaction (7 out of 9 wells) on the depth parameter, it showed no FS at all in overall considerations. Again, for the same reasons as in the case of submersible pump application, the relatively small number of wells using this method weakens the basis for broad generalisations.

8.5.4

Analysis of results on other considerations-Sedimentation:

1. Apart from analysis on the basis of blocks, well depths and well cleaning techniques, the occurrence of sediments, especially coarse sediments was quite a significant event. The wells where this occurred to a noticeable degree have been listed in Table 1.9 in <u>Annexure 1</u>. As is evident from this table, 30 wells discharged significant sediments and constituted 22.4% of the 134 wells rehabilitated. Therefore, sedimentation is actually quite a significant problem that was earlier not clearly evident. Within this group, 18 wells yielded fine material which indicate development related problems at the time of well construction or placement of the well screen in unsuitable strata. 10 wells yielded coarse sediments which could not come in through the well screen, indicating the possibility of casing failure. Samples of most of the coarse sediments have been preserved for future reference in case the issue is pursued further.

ANNEXURES

,

ANNEXURE 1

- ----

51. No.	Well Depth Range	Nos. of Wells	Rehab. Depth As S US N	ssessment Overall K FS	Rehabilitation Results PS DS NS NK
1.	Not known	1		1	1
2.1 2.2	>130m & ≤140m >140m & ≤150m	2 1	2		2 1
3.1 3.2	>160m # ≤170m >170m # ≤180m	2 1	2 1		2 1
4.1 4.2 4.3	>210# & ≤220# >230# & ≤240# >240# & ≤250#	1 4 2	1 3 2	2	1 2 1
7.1 -	>250# & ≤260#	1	1		1
	Totals	15	13 1	1 3	12

Table 1.1 :	hu)	Block-Distribution	of	le 11	Depths,	Rehabil itation	Depth	Assessment	1	Overall
	Reha	bilitation Results								

Table 1.2 : Chandbali Block-Distribution of Well Depths, Rehabilitation Depth Assessment & Overall Rehabilitation Results

51.	Well Depth Range	Nos. of	Rehab. Depth Assess	seent Overall Rehab	ilitation Results
No.		Vells	S US MK	FS PS	DS NS NK
1.1	>120# & \$130#	1	1	1	
2.1	>170m & ≤180m	4	4	3	1
2.2	>180m & ≤190m	2	2	2	
2.3	>190m & ≤200m	2	2	1	
3.1	>200m & <210m	2	2	1 1	2
3.2	>210m & <220m	2	1 1		1
3.3	>240m & <250m	2	1 1		1
4.1	>250∎ & ≤260m	1	1	1	
	Totals	16	12 4	10	6

51. No.	Well Depth Range	Nos. of Nells	Rehab. De S US	oth Assessment 5 NK	Overall FS	i Rehat PS	pilitation DS N	Assessment S NK	
1.	Not known	5		5		2		3	
2.1 2.2 2.3 2.4	> 10m & ≤ 20m > 20m & ≤ 30m > 30m & ≤ 40m > 40m & ≤ 50m	5 5 42 7	5 5 40 6	2	3 2 18 1	1	1 13 1	1 1 1 1 7 3 4 1	
3.1 3.2	> 50æ & ≤ 60m > 60æ & ≤ 70m	1 1	1	1				1	
4.1 4.2 4.3 4.4 4.5	>100m & <110m >110m & <120m >120m & <130m >130m & <140m >140m & <150m	2 8 1 - 2 1	2 7 1 2 1	1				2 8 1 2 1	
5.1	>150m & ≤160m	1		1				1	
	Totals	81	70	65	24	3	15	ו ע	

Table 1.3 : Delang Block-Distribution of Well Depths, Rehabilitation Depth Assessment & Overall Rehabilitation Results

Table 1.4 : Kanas Block-Distribution of Well Depths, Rehabilitation Depth Assessment & Overall Rehabilitation Results

51. Mo.	Well Depth Range	Nos. of Vells	Rehab. S	Depth US	Assessment. NK	Overall Reh FS PS	uabilitat DS	ion As: NS	sessøent. HK
1.	Not known	2			2				2
2.1 2.2	> 80m & ≤ 90m > 90m & ≤100m	3 7	37				2	35	
3.1 3.2	>10Cm & ≤110m >110m & ≤120m	8 2	72	1		1	1	6 1	•
	Totals	22	19	1	2	1	4	15	_2

S1.	Well Depth Range	Nos.	Rehab.	Depth		Overall	Reha	bilita	tion Re	sult
ny.		Wells	S	US	NK	FS	PS	DS	NS	XX
1.	Not known	8			8		2		3	3
2.1 2.2 2.3 2.4 2.5	≤ 10m > 10m & ≤ 20m > 20m & ≤ 30m > 30m & ≤ 40m > 40m & ≤ 50m	- 5 5 42 7	5 5 40 6	2		3 2 16 1	1	1 15 1	1 1 7 4	1 1 3 1
3.1 3.2 3.3 3.4 3.5	> 50m & ≤ 60m > 60m & ≤ 70m > 70m & ≤ 80m > 80m & ≤ 90m > 90m & ≤100m -	1 1 - 3 7	1 3 7	1				2	1 1 3 5	
4.1 4.2 4.3 4.4 4.5	>100m & <110m >110m & <120m >120m & <130m >130m & <140m >140m & <150m	10 10 2 4 2	9 9 2 4 2	1 1		1		1	8 9 4 2	1
5.1 5.2 5.3 5.4 5.5	>150m & <160m >160m & <170m >170m & <180m >180m & <190m >190m & <200m	1 2 5 2 2	2 5 2 2	1		3 2 1			1 2 2 1	
6.1 6.2 6.3 6.4 6.5	>200m & <210m >210m & <220m >220m & <230m >230m & <240m >240m & <250m	2 3 4 4	2 3 3	2 1 1 1		1 2 2			2 2 2 2	
7.1	>250# & \$260#	2	2		دان معدي	1			1	،
	Total - all blocks	134	114	12	8	36	3	21	65	9

Table 1.5 : Distribution of Rehabilitation Success by Depth & Overall Rehabilitation Results

×.

×.

S].	Well Cleaning Wethod	Nos.	Rehab.	. Depth	1	Overa	11 Reh	abilita	tion Re	sult	
1101	• NEWLII NOINES	Wells	5	US	NK	FS	PS	DS	NS	ĸĸ	
1.	Air Line Depth Not known ≤ 50m >50m & ≤100m >100m & ≤150m >150m & ≤200m >200m & ≤250m >250m >250m	8 55 8 24 10 10 	52 8 23 9 6	3 1 1 4 9	8	24 2 5 3	2 1	15 2 2	3 13 6 19 5 7	3 2 1	
		1.1.4		3	-		.			•	
2.	Power over pumping with submersible pump >100m & s150m >150m & s250m >200m & s250m >250m Totals	3 2 3 2 10	3 2 2 2 9	1		1 2 2 5			3 1 1 5		
3.	Kanual over pumping with Tara DA pump ≤ 50m >100m & ≤150m >150m & ≤200m Totals	4 4 1 9	4	1 1					4	4	
	Overall Totals	134	114	12	8	39	3	19	64	9	- 1

Table 1.6 : Summary Rehabilitation Results in relation to Well Cleaning Method

- 4

¥

<u></u>`~~~

Site		Reg.No.	Depth Drilled	Cleaning Result	Rehab. Nethod	Remark:	s Result
Adala,	Kanas	13172601001	103.0	s. s	1:AL ine 2:POP	KS	20 1pm, 6.08 ∎ drawdown.
Badala,	Kanas	13072501109	111.0	s* \$	1.ALine 2.POP	NS	
Gudupailo,	Delang	13122411304	136.5	S	POP	NS	10/88:Ches+ Donk. Pump, US. 12/89:Ches+Air. US
Bhuimpur, Krnapokhari,	Au) Chandb)	06020720903 .05102311002	173.0 174.0	S S	pop Pop	NS FS	Initially Clay
Patuli,	(handb)	.05102211802	214.0	us* ک ل	1:ALine 2:POP	NS	
Lokacada,	MU	06020719507	238.0	US* S	1:ALine 2:POP	FS	Initially Sand
Khalapda., Balamati, Chasxhanada,	Aul Aul Chandbi	06020719202 06020718207 .05102202004	239.0 251.0 253.0	S S	POP POP POP	FS FS FS	

Table 1.7 : Summary Results with Power Over Pumping using Submersible Pumps

56

a A

4

-

Note: Result marked * indicates the result of the Air Line method

Table 1.8 : Summary of Results with Manual Over Pumping using Tara Direct Action Pump components

Site		Reg. No.	Depth Drilled	Cleaning Result	Rehab. Method	Result	Remarks
Ankula.	Suianour	13122406602	20.1	s	NOP	NK	Sand. Lentonite
Thestena,	SriP.pur	13122410901	34.1	S	MOP	NK	Bentonite, fine sand
Thestena,	SriP.pur	13122410902	39.95	S	NOP	NK	Bentonite, fine sand
Thestena,	SriP.pur	13122410903	40.38	S	MOP	NK	Bentonite, fine sand
Bilesour.	SriP.pur	13122411402	100.5	S	NOP	NS	
Bilacour.	SriP.our	13122411401	110.5	US	1: MOP	NS	MOP US. Dirty
				S*	2:AL ine		water+sand with air line
Bilzour,	SriP.pur	13122411403	114.5	S	NOP	NS	
Gudicailo.	Gualpada	13122411305	136.5	S	NOP	NS	
Gudzailo,	Gualpada	13122411303	150.5	US	MOP	NS	Well blocked at 30m

Note: Result marked ' indicates the result of the Air Line method

2

- ×

e de secto

 $^{-h}$

Table 1.9 : Occurrence of Sedimentation

51. No.	Site	Site No.	Dept Drilled	h in m Reached	Remarks
Aul	Block				
1.	Alkani	04	242.0	242.0	Initially sand. SY, 35 lpm.
2.	Bhuinpur	03	173.0	174.0	Initially clay came out. SY, 35 Ipm.
3.	Lokapada	07	238.0	237.5	Initially sand came out. SY, 70 lpm.
4.	Patrapur	01	HK.	16.0	Fine sand initially which continued. 100 mm well casing. SY.
Char	ndbali Block				
5.	Kalbada	01	241.0	133.0	Large volume of medium grade sand came out. Depth before rehab, was 161.8 m and reduced to 133.2 m after rehab. Casing fracture? VLY.
6.	Matto	03	242.0	239.5	Screen free before development. Some fine black sand came out. SY.
7.	Paharpur	02	208.0	163.6	Little quantity of silt came out. Very low yield.
Del	ang Block, Ber	aboi	GP .		
8.	Beraboi(Exp)	05	112.5	108.0	Coarse sand during cleaning.
9.	Damapur	01	32.0	32.0	07/89-Chemicals, Air lift, 4.30 hrs, unsatisfactory, sand, LY.
10.	Jokanarua	01	36.0	- 34.0	Coarse sand during cleaning.
11.	Manijipur	01	28.1	26.0	Medium to fine sand during cleaning,
12.	Odataraboi	01	35.0	32.27	11/89-Chemicals, Air lift, 4 hrs, unsatisfactory, fine sand.
13.	Odataraboi	03	34.0	31.0	Coarse to medium sand.
14.	Pirhapatana	01	36.0	34.0	Coarse sand, pebbles during cleaning.
Del	ang Block, Chi	inpur	₿ ₽		
15.	Ankoi	41	NK	52.0	Turbidity & coarse sand which cleared. Turbidity after reinst.
16.	Gadamotari	01	50.4	48.5	Black sand, dirty water, LY, which cleared. Depletion later.
17.	Bartol	04	69.0	62.6	Turbid water, sand, LY. Then clear, LY.
Del	lang Block, Gu	al ipad	a 6P		
18.	Bolakana	04	32.40	24.96	Air hose stuck, cut off. Pebbles during cleaning. Casing failure?
Del	lang Block, Su	janpur	6P		
19.	. Ankula	02	20.1	17.0	Plenty of sand & some bentonite, which cleared.
De	lang Block, Sr	i Purs	hottampur		
20	. Bilaspur	01	110.5	110.0	Manual over pumping US. Black slimy water with air line. Also fine sand which cleared. R&D IRP site.
21	. Thentena	01	34.1	33.1	Substantial bentonite and fine sand cleared.
22	. Thentena	02	39.95	39.5	Substantial bentonite and fine sand cleared.
23	. Thentena	03	40.38	38.0	Substantial bentonite and fine sand cleared.
Ka	nas Block				
24	. Anjira	52	NK	14.0	Rejuv, well, choked. Initial depth 14 m. No chemical used. Yellow clay & sand came out. SY.
25	Bhatapada	01	97.0	97.0	SY. Initially grey fine sand came out.
26	. Dochina	03	115.0	113.1	SY. Initially, grey fine sand came out.
27	. Gadakharda	53	HX	27.0	Rejuv. well, choked. Initial depth 18 m cleaned to 27 m. No chemicals. Red clay, fine sand initially, then red medium sand and scales. Sand continued. SY.
28	. Kadua	03	100.0	100.0	SY. Initially grey medium sand came out.
29). Sahoopada	04	91.0	88.0	LY. 3000 lit water added during cleaning. Red clay & coarse laterite-like gramules.
3(), Sahoopada	05	90.0	88.5	SY. Initially red medium/coarse sand came out. 3000 lit water added during cleaning. LY.

NNEXURE 2

Annex 2, Pg 1

÷.

°.≱Č.

Table 2.1 : Detailed Rehabilitation Data 4 Results - Aul block

Site Village Reg. No. GP	Drilling Date Depth : m	ling Well Cleaning Date Method h : m Duration : hrs Initial Depth : m Final Depth : m	Yield Na Satis- S factory: SY Low F Vield LY	Water Quality Status Survey: SS Post	Water QualityPump ReinstallationStatusReinstallationSurvey: SSDatePostType-rehab: PR	Remarks	Conclusion Satisfacto Unsatisfa	ns from Rehi ory :S ctory :US	abilitation Fully Success Partly Succes Doubtful Successfu Not Successfu	sful : FS ssful: PS cess : DS il : NS
		Final Vepts : .		-renau; rk		Depth	Yield	Chemistry	Results	
Site	Drilling	Well Cleaning	Yield	Water Quality	Pump Remarks		Conclusio	ns from Reha	bilitation	
• ·					Reinstallation		Depth	Yield	Chemistry	Results
Balakati 06020718204 Balakati GP	Dt:29.01.88 Dp: 218	Date : 23.03.92 Meth : Air Line Dur : 3.7 Ini Dp : 218 Fin Dp : 218	SY	SS : Fe PR1: Fe	28/03/92 IM 2 SL	Discharged at 10 lpm.	\$	5	US	NS
3alakati 36020718207 ≆alakati GP	Dt:30.01.88 Dp: 251	Date : 25.03.92 Weth : Power over pumping Dur : 6 Ini Dp : 251 Fin Dp : 251	SY	SS : Fe PR1: OK	28/03/92 IN 2 SL	SWL came up by 2 mtrs after develop- ment.	S	S	S	FS
shu inpur 16020720903 Hu inpur 6P	Dt:21.01.88 Dp: 173	Date : 29.03.92 Meth : Power over pumping Dur : 1.3 Ini Dp : 174 Fin Dp : 174	SY	SS : Fe PR1: Fe	30/03/92 IN 2 SL	Initially clay came out. 35 lpm	\$	5	US	NS

Annex 2, Pg 2

-

X,

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusion	s from Reha	abilitation Chemistry Results US NS S NS S NS S NS		
					Kennstallation		Depth	Yield	Chemistry	Results	
Bhu inpur 06020720909 8hu inpur 6P	Dt:26.01.88 Dp:169	Date : 29.03.92 Meth : Air Line Dur : 1.1 Ini Dp : 172 Fin Dp : 172	SY	SS : Fe PR1: Fe	30/03/92 IN 2 SL	10 lpm	S	5	US	NS	
Dewal 06020719903 Dewal GP	Dt:30.09.87 Dp: 232	Date : 27.03.92 Meth : Air Line Dur : 3 Ini Dp : 232 Fin Dp : 232	LY	SS : Fe PR1: OK	28/03/92 IN 2 SL	0.7 lpm, poor recovery, US.	S	US	S	NS	
Dema) 06020719906 Dema1 6P	Dt:13.10.87 Dp: 234.3	Date : 29.03.92 Meth : Air Line Dur : 2 Ini Dp : 197 Fin Dp : 197	LY	SS : Fe PR1: OK	27/03/92 IN 2 SL		US	US	S	NS	
Demal D6020719907 Demal GP	Dt:05.03.88 Dp: 248	Date : 25.03.92 Meth : Air Line Dur : 3 Ini Dp : 248 Fin Dp : 248	ĹŸ	SS': Fe PR1: OK	30/03/92 IN 2 SL		S	US	S	NS	

4

.

Ъ.

×
· · · · ·

.

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusion	s from Reha	bilitation	
					Kennstallation		Depth	Yield	Chemistry	Results
Lokapada 06020719507 Demal GP	Dt:15.10.87 Dp: 238	Date : 22 & 24.03.92 Meth 1 : Air Line Dur 1 : 1 Meth 2 : Power over pumping Dur 2 : 5 Ini Dp : 237.5 Fin Dp : 237.5	SY	SS : Fe PR1: OK	28/03/92 IN 2 SL	Initially sand removed, 70 lpm.	5	S	S	FS
Nahoo 06020723303 Nahoo GP	Dt:09.08.88 Dp: 141	Date : 28.03.92 Weth : Air Line Dur : 1.4 Ini Dp : 140.5 Fin Dp : 140.5	SY	SS : Fe PR1: Fe	29/03/92 IN 2 SL	100 lpm	S	S	US	NS
Nahoo 06020723304 Nahoo GP	Dt:08.11.88 Op: 170	Date : 28.03.92 Meth : Air Line Dur : 2.1 Ini Dp : 172 Fin Dp : 172	SY	SS : Fe PR1: OK	29/03/92 IN 2 SL	80 lpm	S	S	S	FS
Kalapahada 06020719202 Mendhapur GP	Dt:18.12.87 Dp: 239	Date : 25.03.92 Neth : Power over pumping Dur : 5 Ini Dp : 239 Fin Dp : 239	SA	SS : Fe PR1: OK	28/03/92 IN 2 SL	35 1pm, draw-down 10 m	S	S	S	FS

÷ ۲

K.

Sold in The Lot of Lot

K,

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusi	ons from Rel	nabilitation	-
					Keinstallation		Depth	Yield	Chemistry	Results
Alakani O6020719104 Hendhapur GP	Dt:07.03.88 Dp: 242	Date : 27.03.92 Weth : Air Line Dur : 2.4 Ini Dp : 241.5 Fin Dp : 242	SY	SS : Fe PR1: OK	29/03/92 IM 2 SL	Sand discharge initially. Final yield 35 lpm.	S	S	S	FS
Gopalpur 16021004904 Karendrapur GP	Dt:14.09.88 Dp: 136	Date : 30.03.92 Meth : Air Line Dur : 1.2 Ini Dp : 136 Fin Dp : 136	SY	SS : Fe PR1: Fe	31/03/92 IN 2 SL	15 lpm	S	S	US	NS
Gopalpur 16021004905 tarendrapur GP	Dt:25.09.88 Dp: 138	Date : 30.03.92 Meth : Air Line Dur : 1.3 Ini Dp : 139 Fin Dp : 139	SY	SS : Fe PR1: Fe	31/03/92 IN 2 SL	15 lpm	S	S	US	NS
Patrapur 96021002401 Patrapur GP	Dt: NK Dp: NX	Date : 28.03.92 Neth : Air Line Dur : 1 Ini Dp : 16 Fin Dp : 16	SY	SS : Fe PR1: Fe	31/03/92 IN 2 SL	Fine sand initially, 100 mm well casing.	Not Known	S	US	NS

i.

¢

¥,

Site	Drilling	Well Cleaning	Yield	Nater Quality	Римр	Remarks	Conclusi	ons from Re	habilitation	
					Reinstallation		Depth	Yield	Chemistry	Results
Paharpur 05102211902 Baligan GP	Dt: 12.03.86 Dp: 208.0	Date : 08.03.92 Meth : Air Line Dur : 2 Ini Dp : 163.6 Fin Dp : 163.6	Very LY	SS :OK PR1:OK	09.03.92 IN 2 SL 9m	Small quan- tity of silt removed.	US	US	S	NS
Patuli 05102211802 Baligan GP	Dt: 21.02.86 Dp: 214.0	Date : 07.03.92 Meth1 : Air Line Dur : 1.75 Meth 2 : Power over pumping Dur : 4.0 Ini Dp : 163.0 Fin Dp : 163.0	LY	SS :C.T.P PR1:OK	07.03.92 IM 2 SL 9m	With PIU, no sediments. Draw down 26m at 4 lps, yield for 10 mins, recovery 15 mins.	n2	US	S	NS
Charadia 05102312601 Charadia GP	Dt: 24.05.86 Dp: 180.0	Date : 17.03.92 Meth : Air Line Dur : 1.8 Ini Dp : 30.0 Fin Dp : 179.0	SY	SS : C PR1: OK	17.03.92 IN 2 SL 6m	Substantial casing depth filled initiallly.	S	5	S .	FS
Charadia 05102312604 Charadia GP	Dt: 26.11.86 Dp: 186.0	Date : 17.03.92 Neth : Air Line Dur : 2 Ini Dp : 186.0 Fin Dp : 186.0	SY	SS : C PR1: OK	17.03.92 IN 2 SL 9m	Steady yield of 10 lpm	S	5	S	FS

Æ

Construction of the local division

Table 2.2 : Detailed Rehabilitation Data & Results - Chandbali block

¥.*

Site	Drilling	Well Cleaning	Yield Wat	Water Quality Pum Rei	Римр	Remarks n	Conclusion	is from Reha	bilitation	
					Reinstallation		Depth	Yield	Chemistry	Results
Jaladharapur 05102313201 Charadia GP	Dt: 05.04.86 Dp: 198.0	Date : 15.03.92 Meth : Air Line Dur : 1.75 Ini Dp : 198.0 Fin Dp : 198.0	SY	SS : OK PR1: Fe	16.03.92 IN 2 SL 6m		S	S	US	NS
laladharpur 15102313203 Charadia GP	Ot: 20.04.86 Dp: 124.0	Date : 15.03.92 Meth : Air Line Dur : 1.75 Ini Dp : 121.5 Fin Dp : 124.0	SY	SS : OK PR1: OK	16.03.92 JN 2 SL 6m		S	S	S	FS
aranapokhari 5102311002 haradia 6P	Dt: 16.04.86 Dp: 174.0	Date : 12 & 13.03.92 Meth : Power over pumping Dur : 5.7 Ini Op : 172.0 Fin Dp : 174.0	SY	SS : C PRI: OK	14.03.92 1N 2 SL 6m	Well emptied in 1.5 min at 4 lps. Recovered in 10 mins.	S	S	S	FS
aranapokhari 5102311003 haradia GP	Dt: 21.04.86 Dp: 201.0	Date : 11.03.92 Meth : Air Line Dur : 1 Ini Dp : 30.0 Fin Dp : 30.0	LY	SS : C,Ec* PRI: OK	11.03.92 1M 2 SL 9m	Failure of casing at 30 m ?	US	US	S	NS
algohira 5102310901 haradia 6P	Ot: 27.03.86 Dp: 176.0	Date : 12.03.92 Meth : Air Line Dur : 1.5 Ini Dp : 156.5 Fin Dp : 176.0	SY	SS : C PR1: OK	13.03.92 IN 2 SL 6m		S	S	S	FS

'**⊀**'

۰,

Annex 2, Pg 6

.

.

÷---

Å

ı.

*

×.

Site	Drilling	Well Cleaning	Yield Water Q.	Water Quality Pump Remains Rem	Resarks	Conclusion	ns from Reha	bilitation		
					Kennstallation		Depth	Yield	Chemistry	Results
Malgohira O5102310902 Charadia GP	Dt: 17.04.86 Op: 178.0	Date : 11.03.92 Meth : Air Line Dur : 2.5 Ini Dp : 177.05 Fin Dp : 178.0	SY	SS : C PR1: OK	11.03.92 IN 2 SL 9m		S	S	S	FS
Nalgohira 05102310903 Charadia 6P	Ot: 22.08.86 Op: 178.0	Date : 13.03.92 Meth : Air Line Dur : 2 Ini Dp : 176.0 Fin Dp : 176.0	LY	SS : C PR1: OK	14.03.92 1H 2 SL 9m		S	US	S	NS
Nalgohira OS102310904 Charadia GP	Dt: 20.07.87 Op: 218.0	Date : 14.03.92 Meth : Air line Dur : 2 Ini Dp : 213.5 Fin Dp : 218.0	S¥	SS : C PR1: OK	15.03.92 IM 2 SL 9m		S	S	S	FS
Pokharisahi 05102310001 Charadia GP	Dt: 04.11.86 Dp: 194.0	Date : 14.03.92 Meth : Air Line Dur : 2 Ini Dp : 189.6 Fin Dp : 194.0	SY	SS : C PR1: OK	15.03.92 IM 2 SL 6m		S	S	S	FS
Chasakhanda 05102202004 Matto GP	Dt: 31.12.86 Dp: 253.0	Date : 10.03.92 Meth : Power over pumping Dur : 2.3 Ini Dp : 250.0 Fin Dp : 251.0	SY	SS : P PR1: OK	12.03.92 IM 2 SL 9m	Well emptied in 2 mins at 4 lps. Full recovery in 5 mins.	S	S	S	fS

7-2

A.

•

X.

Site	Drilling	Well Cleaning	Yield	Nater Quality	Pump Reinstallation	Remarks	Conclusions from Rehabilitation				
							Depth	Yield	Chemistry	Results	
Malbada O5102201801 Matto GP	Dt: 27.09.86 Dp: 241.0	Date : 10.03.92 Meth : Air Line Dur : 2.5 Ini Dp : 161.0 Fin Dp : 133.0	Very LY	SS r OK PR1: OK	10.03.92 IN 2 SL	Large volume of medium sand & refilling. Casing failure?	US	US	S	₩S	
Matto 05102201903 Watto GP	Dt: 03.10.86 Dp: 242.0	Date : 08.03.92 Meth : Air Line Dur : 2 Ini Dp : 237.75 Fin Dp : 239.5	SY	SS : OK PR1: OK	09.03.92 1N 2 SL 9m	Some fine black sand removed.	S	S	S	FS	

÷.

ŀ

 $\mathcal{T}_{*}^{'}$

Site	Drilling	Well Cleaning	Yield	Water Quality	ity Pump Reinstallation	Remarks	Conclusions	s from Reh	abil itation	
					Keinstallation		Depth	Yield	ehabilitation Chemistry US US US US US	Results
Abhayamukhi Ramachandrapur 13122507203	Dt:28.02.87 Dp:117.0	Date : 02.11.91 Weth : Air Line Dur : 16.8 Ini Dp : 105.45 Fin Dp : 105.45	SY	SS :Od,Ec,Fe Cl PR1:Od,Pr,Ec, Fe,Cl	12.12.91 IM2		US	S	US	NS
Abhayamukhi Ramachandrapur 13122507204	Dt:13.03.87 Dp:111.5	Date : 28.10.91 Meth : Air Line Dur : 9.2 Ini Dp : 111.0 Fin Dp : 111.0	SY	SS :HK PR1:Pr,Ec,Fe Cl	12.12.91 IN2		S	S	US	NS
Abhayamukhi Ramachandrapur 13122507205	Ot:18.02.87 Op:110.5	Date : 02.11.91 Meth : Air Line Dur : 31.0 Ini Dp : 110.0 Fin Dp : 110.0	SY	SS :Pr PR1:Fe,Cl	12.12.91 IN2		S	S	US	₩S
Abhayamukhi Ramachandrapur 13122507207	Dt:NK Dp:108.0	Date : 08.11.91 Meth : Air Line Dur : 7.0 Ini Dp : 107.45 Fin Dp : 107.45	LY	SS :Ec,Fe,C) PR1:Ec,Fe,Cl	12.12.91 IMPVCSS	Water poured in during cleaning	S	US	US	NS
Ind ipurdeul i 13122506401	Dt: 30.12.85 Dp:125.0	Date : 30.09.91 Meth : Air Line Dur : 3.0 Ini Dp : 124.0 Fin Dp : 124.0	SY	SS :Od,Ec*,Fe PR1:MK	24.10.91 IMPVCSS	01d IRP	S	S	Not known	Not known

Table 2.31 : Petailed Rehabilitation Data & Results - Abhayamukhi Ramachandraput GP, Delang block

Å

Contraction and the second

Â,

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump Reinstallation	Remarks	Conclusions from Rehabilitation				
							Depth	Yield	Chemistry	Results	
Ind ipurdeu) i 13122505402	Dt:02.02.87 Dp:114.5	Date : 25.10.91 Meth : Air Line Dur : 5.25 Ini Dp : 118.2 Fin Dp : 118.2	SY	SS :Ec*,Fe,Cl PR1:Ec*,Fe,Cl	25.10.91 INPVCSS		S	S	US	NS	
Ind ipurdeul i 13122505413	Dt:03.05.87 Dp:118.5	Date : 25.10.91 Meth : Air Line Dur : 12.75 Ini Dp : 118.3 Fin Dp : 118.3	SY	SS :Od,Pr,Ec, Fe,Cl PR1:Ec*,Fe,Cl	25.10.91 IMPVCSS		S	S	US	NS	

Δ.

≺

1

 $\mathcal{T}_{\mathcal{F}}^{(i)}$

٠.

Site	Drilling	Well Cleaning	Yield	Water Quality	Puep	Remarks	Conclusi	ons from Reh	abilitation	
		1			Reinstallation		Depth	Yield	Chemistry	Results
Ayatnadua 131724058101	Dt:17/04/87 Dp: 36.50	Date : 14 & 15/05/91 Heth : Air line Dur : 4.0 Ini Dp : 29.2 Fin Dp : 34.0	SY	SS :Od,Pr,Fe PR1:OK PR2:OK PR3:OK	05/06/87 IN2 15/05/91 IN2 SL		S	S	S	FS
Beraboi 13122408901	Dt:08/11/85 Dp: 36.00	Date : 11 & 12/04/91 Neth : Air line Dur : 7.0 Ini Dp : 34.00 Fin Dp : 36.00	SY	SS :0K PR1:0K PR2:Pr PR3:0K PR4:0K	24/01/86 IN2 20/04/88 INPVCBS 18/08/89 INPVCSS 12/04/91 INPVCSS		S	S	S	FS
Beraboi 13122408902	Dt:17/11/85 Dp: 36.00	Date : 15/05/91 Meth : Air line Dur : 2.0 Ini Dp : 30.00 Fin Dp : 34.00	SY	SS :OK PRI:OX PR2:OK PR3:Pr PR4:Pr	25/01/86 1M2 15/05/91 1M2 SL		S	S	US	DS
Beraboi 13122408903	Dt:29/11/85 Dp: 36.00	Date : 13/04/91 Meth : Air line Dur : 3.75 Ini Dp : 33.00 Fin Dp : 34.00	SY	SS :OK PR1:Pr PR2:Pr PR3:OK	25/01/85 IN2 26/04/90 IN2IARA 14/04/91 INFVCSS		S	S	US	DS

Table 2.32 : Detailed Rehabilitation Data & Results - Beraboi &P, Delang block

4

South State (1999) State (1999)

×.*

Annex	2,	Pg	- 12

-

Site	Drilling	Well Cleaning	Yield Water Quality	ity Pump Reinstallation	Remarks	Conclusi	ons from Reha	abilitation		
					Keinstallation		Depth	Yield	Chemistry	Results
Beraboi 13122408904	Dt:27/11/85 Dp: 40.00	Date : 13/04/91 Meth : Air line Dur : 6.5 Ini Dp : 37.00 Fin Dp : 37.00	SY	SS :Od,Pr,Fe PR1:Od PR2:OK PR3:Pr	24/01/86 IM2		S	S	US	₽S
Beraboi 13122408905 (Exploratory)	Dt:03/04/85 Dp: 112.50	Date : 16 & 17/04/91 Weth : Air line Dur : 12.5 Ini Dp : 108.00 Fin Dp : 108.00	SY	SS :NK PR1:0d,Fe PR2:0d,Fe PR3:Fe PR4:Fe PR5:0d,Pr,Fe PR6:0d,Pr,Fe	NK IN2 17/04/91 IMPVCSS	Coarse sand during cleaning.	S	S	US	NS
Beraboi 13122408941	Not known	Date : 13/04/91 Meth : Air line Dur : 2.0 Ini Dp : 11.50 Fin Dp : 11.50	SY	SS :0X PR1:0K PR2:0d PR3:0K PR4:0K	15/04/87 INL SUC 15/04/91 INL SUC		NK	S	S	PS
3rahmeswarpur 13122409001	Dt:03/03/86 Dp: 32.13	Date : 17/05/91 Meth : Air line Dur : 5.0 Ini Dp : 32.00 Fin Dp : 32.00	SY	SS :Od,Pr,Fe PR1:OK PR2:OK PR3:OK	25/04/86 IN2		S	5	S	FS
lual i 3122405701	Dt:06/01/86 Dp: 31.75	Date : 14/04/91 Meth : Air line Dur : 4.0 Ini Dp : 32.00 Fin Dp : 32.00	SY	SS :Od,Pr,Fe PR1:OK PR2:OK PR3:OK	11/03/86 1M2 14/05/91 1M2 SL		S	S	S	FS

 \mathbf{y}_{\pm}

X

Site	Drilling	Well Cleaning	Yield W	Water Quality	lity Pump Reinstallation	Remarks	Conclusio	ons from Reha	bilitation	
					Kennstallation		Depth	Yield	Rehabilitation Chemistry F US C S F US C S F S F S F S F S F	Results
Damapur 13122408601	Dt:23/12/85 Dp: 32.00	Date : 10/05/91 Meth : Air line Dur : 4.0 Ini Dp : 31.98 Fin Dp : 32.00	SY	SS :Ec* PR1:Pr,Ec* PR2:Ec* PR3:Ec* PR4:Pr,Ec*	25/01/86 IN2 18/07/89 IMPVCSS 10/05/91 IMPVCSS	07/89- Chem, Air lift, 4.30 hrs, US, sand, LY	5	S	US	05
Damapur 13122408602	Dt:22/02/86 Dp: 30.25	Date : 09/05/91 Meth : Air line Dur : 7.5 Ini Dp : 30.00 Fin Dp : 30.00	SY	SS :OK PR1:Od PR2:OK PR3:OK	24/04/86 IN2 23/04/90 IN2TARA 10/05/91 INPVESS		S	S	S ·	FS
Jokanarua 13122409401	Dt:18/11/85 Dp: 36.00	Date : 29/03/91 Meth : Air line Dur : 3.25 Ini Dp : 27.15 Fin Dp : 34.00	SY	SS :Od,Pr FR1:Od PR2:OK PR3:Pr	05/05/86 IN2 14/08/87 IM2 w Brs Cyl 30/03/91 IMPVCSS	Coarse sand during cleaning.	S	S	US	05
Jokanarua 13122409402	Dt:25/11/85 Dp: 36.00	Date : 29/03/91 Meth : Air line Dur : 2.0 Ini Dp : 35.97 Fin Dp : 36.00	SY	SS :Od,Pr FR1:Od PR2:OK PR3:OK	10/02/86 IM2 08/07/87 IM2 DTC 30/03/91 IMPVCSS		S	S	S	FS
Manijipur 13122408401	Dt:22/01/86 Dp: 28.10	Date : 19/04/91 Meth : Air line Dur : 3.75 Ini Op : 23.00 Fin Dp : 26.00	SY	SS :0d,Pr,Fe PR1:0d PR2:0K FR3:0X PR4:0K PR5:0K	25/04/86 IN2 23/04/91 INPVCSS	Nedium to fine sand during cleaning.	S	S	S	FS

4-1

.

•

Т.

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusi	ons from Reh	bilitation Chemistry S US S S S	
					Reinstallation		Depth	Yield	Chemistry	Results
Idataraboi 13122409101	Dt:08/11/85 Dp: 35.00	Date : 30/04/91 Meth : Air line Dur : 2.5 Ini Dp : 32.46 Fin Dp : 32.27	SY	SS :NK PR1:0d PR2:0K PR3:0K	11/12/85 1N2 14/08/87 1N2 w Brs Cyl 08/11/89 1NPVC8S 30/04/91 1NPVCSS	11/89- Chem, Air lift, 4 hrs, US, fine sand.	S	S .	S	FS
Idataraboi 3122409102	Dt:30/11/85 Dp: 34.00	Date : 03/05/1 Meth : Air line Dur : 4.0 Ini Dp : 32.00 Fin Dp : 33.00	SY	SS :Od,Pr,Fe PR1:Pr PR2:OK PR3:Pr	22/12/85 IN2 07/04/87 IM2 OTC 25/11/89 IMPVCBS 03/05/91 IMPVCBS	11/89- Chem, Air lift, 4 hrs, US. 2.25 hrs, 2nd try, S.	S	S	US	DS
idataraboi 3122409103	Ot:05/11/85 Dp: 34.00	Date : 29/04/91 Meth : Air line Dur : Ini Dp : 28.45 Fin Dp : 31.00	SY	SS :0K PR1:0K PR2:0K	11/03/86 IW2 07/04/87 IN2 OTC 30/04/91 IMPVCSS	Coarse to wediuw sand.	S	S	S	FS
irhapatana 3122409701	Dt:20/11/85 Dp: 36.00	Date : 06/04/91 Meth : Air line Dur : 2.7 Ini Dp : 31.10 Fin Dp : 34.00	SY	SS :0d,Pr PR1:0K PR2:0K PR3:0K PR4:0K	06/03/86 IN2 06/04/91 INPVCSS	Coarse sand, pebbles during cleaning.	S	S	S	FS
irhapatana 3122409702	Dt:28/11/85 Dp: 36.00	Date : 05/04/91 Meth : Air line Dur : 2.5 Ini Dp : 31.47 Fin Dp : 34.00	SY	SS :0K PR1:0d PR2:0K	28/02/86 IN2 07/04/91 INPVCSS		S	5	S	FS

.

¥

*

Annex 2, Pg 15

1

1:

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusio	ons from Reha	bilitation	
				·	Keinstallation		Depth	Yield	Chemistry	Results
Pirhapatana 13122409741	NK	Date : 06/04/91 Meth : Air line Dur : 1.0 Ini Dp : 39.00 Fin Dp : 39.32	SY	SS :OK PR1:OK PR2:OX	11/05/86 INL SUC 06/04/91 INL SUC		NK	S	S	PS
Praharajpur 13122409601	Dt:24/11/85 Dp: 36.00	Date : 31/03/91 Neth : Air line Dur : 3.0 Ini Dp : 36.00 Fin Dp : 36.00	SY	SS :Od,Pr PR1:OK FR2:OK PR3:OK	04/02/86 1K2 31/03/91 1MPVCSS		S	S	S	FS
Praharajpur 13122409602	Dt:07/12/85 Dp: 36.00	Date : 31/03/91 Meth : Air line Dur : 3.0 Ini Dp : 35.97 Fin Dp : 36.00	SY	SS :0d,Pr PR1:0K PR2:0K PR3:0K PR4:0K PR5:0K	04/02/86 1N2 31/03/91 1NPVCSS		S	S	S	FS
Praharajpur 13122409603	Dt:17/11/85 Dp: 36.00	Date : 03/04/91 Meth : Air line Dur : 4.5 Ini Dp : 36.00 Fin Dp : 36.00	SY	SS :0X PR1:0d PR2:0K PR3:0K	11/02/86 1N2 03/04/91 INPVCSS		S	S	S	FS
Praharajpur 13122409604	Dt:18/11/85 Dp: 40.00	Date : 03/04/91 Meth : Air line Dur : 3.0 Ini Dp : 39.50 Fin Dp : 40.00	SY	SS :OK PR1:Od PR2:OK PR3:OK	11/02/86 IM2 03/04/91 IMPVCSS		S	S	S	FS

×---

N

Site	Drilling	Well Cleaning	Yield	Nater Quality	Pump	Remarks	Conclus	ions trom Re	habilitation	
					Reinstallation		Depth	Yield	Chemistry	Results
³ raharajpur 13122409605	Dt:27/11/85 Dp: 40.00	Date : 02/05/91 Neth : Air line Dur : 5.0 Ini Dp : 40.00 Fin Dp : 40.00	SY	SS :Pr PR1:0K PR2:0K PR3:0K	12/02/86 1N2 02/05/91 1KPVCSS		S	S	S	FS
Rencha i 3122409301	Dt:18/11/85 Dp: 40.00	Date : 21/03/91 Meth : Air line Dur : 4.0 Ini Dp : 37.40 Fin Dp : 38.20	SY	SS :0d,Pr PR1:0d PR2:0K PR3:0X	15/12/85 IN2 06/07/87 IN2 OTC 15/12/89 IN2 29/03/91 INPVCSS	12/89- Chem, Air lift, 4.50 hrs, S.	S	S	S	FS
Rencha 3122409302	Dt:25/11/85 Dp: 36.00	Date : 26/03/91 Meth : Air line Dur : 4.0 Ini Op : 31.47 Fin Dp : 32.00	LY	SS :Od,Pr PR1:Pr PR2:Od PR3:Pr	25/12/65 IN2 11/11/89 INPVCBS 26/03/91 INPVCSS	11/89- Chem, Air lift, 4 hrs, 2nd try, 3.5 hrs, LY,	S	US	US	NS
tencha 3122409303	Dt:27/11/85 Dp: 40.00	Date : 25/03/91 Meth : Air line Dur : 4.5 Ini Dp : 35.27 Fin Dp : 38.50	SY	SS : DK PR1:Od PR2:Od PR3:OK	02/01/86 1M2 14/08/87 1M2 w Brs Cy1 11/12/89 IMPVCBS 11/04/90 IM2TARA 29/03/91 IMFVCSS	12/89- Chem, Air lift, 4.5 hrs, US.	S	S	US	ÐS
encha 3122409304	Dt:26/11/85 Dp: 36.00	Date : 23/03/91 Meth : Air line Dur : 4.5 Ini Dp : 34.38 Fin Dp : 35.20	SY	SS :OK PR1:Pr FR2:OK PR3:Pr	02/01/86 IM2 06/07/87 IM2 OIC 16/07/89 IMPVCSS 23/03/91 IMPVCSS	07/89- Chem, Air lift, 4.3 hrs, S.	S	S	US	DS

¥---

 $\langle \boldsymbol{\zeta} \rangle$

*

Site	Drilling	Well Cleaning	Yield	Water Quality	Ритр	Remarks	Conclusi	ons from Reh	bil itation	
Site Rencha 13122409305 Udayapur 13122408801					Reinstallation	mp Remarks Conclu sinstallation Depth 5/02/86 IM2 11/89- Chew, S 1/08/87 Air lift, 1M2 w Brs Cyl 4.5 hrs, S. 1/11/89 IMPVCBS 3/03/91 IMPVCSS 4/01/85 IM2 1/04/91 IMPVCSS	Depth	Yield	Chemistry	Results
Rencha 13122409305	Dt:25/12/85 Dp: 36.10	Date : 23/03/91 Meth : Air line Dur : 5.0 Ini Dp : 35.00 Fin Dp : 36.00	SY	SS :NK PR1:OK PR2:OK PP3:Od.Pr	05/02/86 1H2 14/08/87 1H2 w Brs Cyl 10/11/89 INPVCBS 23/03/91 IMPVCSS	11/89- Chew, Air lift, 4.5 hrs, S.	S	S	US	DS
Udayapur 13122408801	Dt:18/11/85 Dp: 36.00	Date : 09/04/91 Neth : Air line Dur : 10.0 Ini Dp : 34.00 Fin Dp : 34.00	LY	SS : 0X PR1:0d PR7:0K PR3:0K PR4:0K PR4:0K PR6:0K	24/01/85 IH2 11/04/91 IMPVCSS		S	US	S	NS

1

Ą

Annex 2, Pg 17

r

Table 2.33 : Detailed Rehabilitation Data & Results - Chainpur GP , Delang block

÷

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusio	ns from Re	Ibilitation Chemistry R NK M US M US M US M	
					Reinstallation		Depth	Yield	Che∎istry	Results
Ankoi 13122404201	Dt: NK Dp: 18.95	Date : 28.12.91 Neth : Air Line Dur : 3.3 Ini Dp : 18.5 Fin Dp : 18.5	SY	SS :Lo pH FR1:NK	29/12/91 Tara DA		S	S	NK	NK
Ariko i 13122404202	DL:NK Dp:24.00	Date : 28.12.91 Meth : Air Line Dur : 3.0 Ini Dp : 23.5 Fin Dp : 23.5	SY	SS :Pr,Lo pH PRI:Lo pH	29/12/91 Tara DA		S	S	US	NS
Ankoi 13122404203	Dt:NK Dp:16.98	Date : 28.12.91 Meth : Air Line Dur : 3.0 Ini Dp : 16.2 Fin Dp : 16.2	SY	SS :Lo pH PR1:Pr,Lo pH	29/12/91 Tara DA		S	S	US	NS
Ankoj 13122404204	Dt:NK Dp:31.15	Date : 28.12.91 Meth : Air Line Dur : 4.25 Ini Op : 31.0 Fin Dp : 31.0	٤Y	SS :Od,Pr, Lo pH,Fe PR1:Lo pH	29/12/91 IN2 Tara	Slight turbidity persisted	S	US	υS	NS
Ankoi 13122404205	Dt:NK	Oate : 28.12.91 Meth : Air Line Dur : 4.25 Ini Dp : 26.7 Fin Dp : 26.7	SY	SS :Od,Pr. Lo pH,Fe PR1:Lo pH	29;12/91 IM2 Tara	Initial turbidity, then cleared	NK	S	US	NS

¥-

Ċ,

X

Site	Drilling	Well Cleaning	Yield	Water Quality	Римр	Remarks	Conclusion	ns from Ret	bilitation Chemistry US HK US US	
·					Reinstallation		Depth	Yield	Chemistry	Results
Ankoi 13122404241	Dt:NK	Date : 28.12.91 Neth : Air Line Dur : 4.3 Ini Dp : 52.0 Fin Dp : 52.0	SA	SS :Pr, Lo pH,Fe PR1:Pr, Lo pH,Fe	29/12/91 IW2 Tara	Initial turbidity, coarse sand, then clear. Turbidity after Re- installation	NK	S	US	NS
Gadamotari 13122403901	Dt:03.10.86 Dp:50.4	Date : 29.12.91 Meth : Air Line Dur : 5.3 Ini Dp : 48.5 Fin Dp : 48.5	LY	SS :Lo pH,Fe PR1:NK	30/12/91 1W2 Tara	Initially black sand & water, LY, then clear water. Depletion with IN2 SL.	S	US	МК	NS
Gadamotari 13122403902	Dt:11.09.86 Dp:38.0	Date : 29.12.91 Meth : Air Line Dur : 3.3 Ini Dp : 36.0 Fin Dp : 36.0	SY	SS :La pH,Fe PR1:Lo pH	30/12/91 IW2 Tara	Initially red water then clear.	5	Ş	US	ds
Gadamotari 13122403903	Ot:12.11.86 Dp:46.0	Date : 29.12.91 Meth : Air Line Dur : 5.25 Ini Dp : 28.2 Fin Dp : 28.2	LY	SS :NK PR1:Pr,Lo pH	30/12/91 IM2 Tara	Initially red water, LY, then clear, LY.	US	US	US	NS

1

外

Annex 2, Pg 19

A.

¥

Site	Drilling	Well Cleaning	Yieid	Water Quality	Ринер	Remarks	Conclusio	ns from Rel	abilitation Chemistry US NK NK US	- F	
					Reinstallation		Depth	Yield	Chemistry	Results	
Gadamotari 13122403906	Dt:NK	Date : 29.12.91 Meth : Air Line Dur : 4.25 Ini Dp : 55.7 Fin Dp : 55.7	LY	SS :MK PR1:Lo pH,Fe	30/12/91 IM2 Tara	Depletion with IM2 SL	ĸĸ	US	US	NS	
Bartol 13122403801	Dt:19.08.86 Dp:48.0	Date : 01.02.92 Meth : Air Line Dur : 3.25 Ini Dp : 46.37 Fin Dp : 46.37	LY	SS :Od,Pr, Lo pH,Fe PR1: NK	11/02/92 1W2 Tara	Initial turbidity, LY. Then clear, LY.	S	US	HK .	NS	
Bartol 13122403802	Dt:19.08.86 Dp:40.0	Date : 28.01.92 Meth : Air Line Dur : 4.0 Ini Dp : 39.0 Fin Dp : 39.0	SY	SS :Pr,Lo pH, Fe PR1:NX	12/02/92 1H2 Tara	Initial turbidity, LY. Then Clear.	S	S	NK	NK	
Barto) 13122403803	Dt:18.10.86 Dp:46.0	Date : 30.12.92 Meth : Air Line Dur : 4.0 Ini Dp : 44.4 Fin Dp : 44.4	LY	SS.:Pr,Lo pH, Fe PR1:Lo pH	12/02/92 IM2 Tara	Red water with LY, no improvement,	S	US	US	NS	
8arto] 13122403804	Dt:27.12.84 Dp:69.0	Date : 24.01.92 Neth : Air line Dur : 3.3 Ini Dp : 62.6 Fin Dp : 62.6	LY	SS :Turb, Lo pH,Fe PR1:NX	11/02/92 IN2 Tara	Turbid water, sand, LY. Then clear, LY	US	US	NK	NS	

 (\mathbf{y}_{i})

C

X

ł

1

Site	Drilling	Well Cleaning	Yield	Water Quality	Ритр	Remarks	Conclusio	ns from Ret	abilitation	
······································					Reinstallation		Depth	Yield	Chemistry	Results
Gadamotari 13122403906	Dt:NK	Date : 29.12.91 Neth : Air Line Dur : 4.25 Ini Dp : 55.7 Fin Dp : 55.7	LY	SS :NK PR1:Lo pH,Fe	30/12/91 IM2 Tara	Depletion with IM2 SL	ΝK	US	US	NS
Bartol 13122403801	Dt:19.08.86 Dp:48.0	Date : 01.02.92 Weth : Air Line Dur : 3.25 Ini Dp : 46.37 Fin Dp : 46.37	LY	SS :OJ,Pr, Lo pH,Fe PRI: <i>N</i> X	11/02/92 1₩2 Tara	Initial turbidity, LY. Then clear, LY.	S	US	NK	NS
Bartol 13122403802	Dt:19.08.86 Dp:40.0	Date : 28.01.92 Meth : Air Line Dur : 4.0 Ini Dp : 39.0 Fin Dp : 39.0	SY	SS :Pr,Lo pH, Fe PR1:MX	12/02/92 IM2 Tara	Initial turbidity, LY. Then clear.	S	S	NK	NK
Bartol 13122403803	0t:18.10.86 Dp:46.0	Date : 30.12.92 Meth : Air Line Dur : 4.0 Ini Dp : 44.4 Fin Dp : 44.4	LY	SS :Pr,Lo pH, Fe PR1:Lo pH	12/02/92 IM2 Tara	Red water with LY, no improvement.	S	US	US	NS
Bartol 13122403804	Dt:27.12.84 Dp:69.0	Date : 24.01.92 Meth : Air line Dur : 3.3 Ini Op : 62.6 Fin Op : 62.6	LY	SS :Turb, Lo pM,Fe PR1:NX	11/02/92 IN2 Tara	Turbid water, sand, LY. Then clear, LY	US	US	NK	NS

4-

Site	Drilling	Well Cleaning	Yield	Water Quality	Ринф	Remarks	Conclusion	ns from Rel	Ibilitation Chemistry US NK US US	r	
					Reinstallation		Depth	Yield	Chemistry	Results	
Ankoi 13122404241	Dt:NK	Date : 28.12.91 Neth : Air Line Dur : 4.3 Ini Dp : 52.0 Fin Dp : 52.0	SY	SS :Pr, Lo pH,Fe PR1:Pr, Lo pH,Fe	29/12/91 1W2 Tara	Initial turbidity, coarse sand, then clear. Turbidity after Re- installation	HK	S	US	NS	
Gadaxotari 13122403901	Dt:03.10.86 Dp:50.4	Date : 29.12.91 Meth : Air Line Dur : 5.3 Ini Dp : 48.5 Fin Dp : 48.5	LY	SS :Lo pH,Fe PR1:NK	30/12/91 1H2 Yara	Initially black sand & water, LY, then clear water. Depletion with IM2 SL.	S	US	NK	NS	
Gadamotari 13122403902	Dt:11.09.86 Dp:38.0	Date : 29.12.91 Weth : Air Line Dur : 3.3 Ini Dp : 36.0 Fin Dp : 36.0	SY	SS :Lo pH,Fe PR1:Lo pH	30/12/91 JW2 Tara	Initially red water then clear.	S	S	US	PS	
Gadamotari 13122403903	Ot:12.11.86 Dp:46.0	Date : 29.12.91 Meth : Air Line Dur : 5.25 Ini Dp : 28.2 Fin Dp : 28.2	LY	SS :NK PR1:Pr,Lo pH	30/12/91 IM2 Tara	Initially red water, LY, then clear, LY.	US	US	US	NS	

•

1

-1

Ĵ.

ł.

v

X10

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusion	s from Reh	abil itat ion	
					Kennstal lation		Depth	Yield	Chemistry	Results
łanchupała 3122408701	Dt: 23/01/86 Dp: 40.95	Date : 22/05/91 Meth : Air line Dur : 3.0 Ini Dp : 39.00 Fin Dp : 40.00	SY	SS :0d,Pr. Ec*,Cl. PR1:Ec*,Cl PR2:Ec*,Cl PR3:Ec*,Cl	16/04/86 IH2 22/05/91 IH2 SL		S	S	US	NS
ranchupała .3122408702	Dt: 31/01/86 Dp: 40.75	Date : 20/05/91 Meth : Air line Dur : 3.0 Ini Dp : 40.70 Fin Dp : 40.70	SY	SS :Od,Pr,Ec* PR1:Ec* PR2:OK PR3:Ec*	09/04/86 IN2 11/11/89 INPYCBS 20/05/91 IN2 SL		S	S	US	DS

١.

ç,

3-

.

.

Ă

Site	Drilling	Well Cleaning	Yield	Water Quality	Ривр	Remarks	Conclusion	Conclusions from Rehabilit Depth Yield Chem	abilitation	
					Reinstallation		Depth	Yield	Ehemistry	Results
Kusundal 13122403701	Dt:06.05.86 Dp:28.3	Date : 03.02.92 Meth : Air Line Dur : 3.5 Ini Dp : 28.3 Fin Dp : 28.3	SY	SS :Pr,Lo pH Fe PR1:Pr,Lo pH	11/02/92 1M2 Tara	Initially red water. Then clear.	S	S	US	ps
Kuwunda] 13122403702	Dt:01.06.86 Dp:34.0	Date : 03.02.92 Meth : Air Line Dur : 4.3 Ini Dp : 31.97 Fin Dp : 31.97	SY	SS :Od,Pr, Lo pH,Fe PR1:Lo pH,Pr	11/02/92 1W2 Tara		S	S	US	DS
Kumundal 13122403703	Dt:10.07.86 Dp:40.0	Date : 03.02.92 Meth : Air line Dur : 4.0 Ini Dp : 38.69 Fin Dp : 38.69	SY	SS :Pr,Fe PR1:Pr,Lo pH	11/02/92 1M2 Tara		S	Ş	US	NS

×-

1

· Ł

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	RemarksConclusionsfrom RehabilitationDepthYieldChemistryResultSUSSNSSSSFSSSSPSSSSDS				
					Keinstallation		Depth	Yield	Chemistry	Results
lu∎ara 3122410403	Dt: 01/01/86 Dp: 40.00	Date : 24/05/91 Meth : Air line Dur : 0.25 Ini Dp : 37.50 Fin Dp : 37.60	No yîeld	SS :Pr PR1:OK PR2:OK	03/03/86 1H2 24/05/91 1H2		S	US	S	₩S
luwara 3122410405	Dt: 31/12/85 Dp: 41.90	Date : 25/05/91 Meth : Air line Dur : 2.3 Ini Op : 41.90 Fin Dp : 41.90	SY	SS :Od,Pr PR1:OK PK2:OK PR3:OK	03/03/86 IN2 25/05/91 IN2 SL		S	S	S	FS
achapada 3122411001	Dt: 20/03/86 Dp: 38.50	Date : 29/05/91 Meth : Air line Dur : 2.0 Ini Dp : 36.50 Fin Dp : 37.00	SY	UU :Od,Pr, Ec*,Fe PR1:Ec* PR2:Ec* PR3:Ec*	16/04/66 1×2 29/05/91 1×2 SL		S	S	US	DS .
achapada 3122411003	Dt: 06/05/86 Dp: 17.90	Date : 30/05/91 Meth : Air line Dur : 3.3 Ini Dp : 15.50 Fin Dp : 17.45	SY	SS :0d,Pr PR1:0K PR2:0X PR3:0K	31/05/86 IN2 OTC 30/05/91 IN2 SL		S	S	S	£S
achapada 3122411005	Dt: 18/11/87 Dp: 15.60	Date : 30/05/91 Meth : Air line Dur : 2.0 Ini Dp : 14.10 Fin Dp : 15.50	SY	SS : CK PR1:0K FR2:0K PR3:0X	09/01/88 INL SUC 17/04/90 IARA DA 30/05/91 IARA DA		S	S	S	FS

*

ł

*

Å

i 2

:

. . } .

Site	Drilling	Well Cleaning	Yield	Nater Quality	Pump	Remarks	Conclusion	ns from Reh	abilitation	
					Reinstallation		Depth	Yield	Chemistry	Results
Gudupailo 13122411303	Dt:13.12.86 Op:150.5	Date : 13.12.91 Neth : Manual over pumping Dur : 8.0 Ini Dp : 30 Fin Dp : 30		SS :Od PR1:Pr	14/12/91 INPVCSS	12/91-Well blocked at 30 m BGL.	ÜS	US	US	NS
Gudupailo 13122411304	Dt:17.07.87 Dp: 136.5	Date : 30.01.92 Meth : Power over pumping Dur : Ini Dp : 134.85 Fin Dp : 134.85	LY	SS :Od,Pr,Ec, Fe,Cl, PR1:Pr	06/02/92 IN Tara	10/88- Chem, Donkey Pump Redev, 45 hrs. US. 12/89- Chem, Air lift 11 hrs, US.	S .	US	US	NS
Gudupailo 13122411305	Dt:28.06.87 Dp: 136.5	Date : 16.12.92 Meth : Manual over pumping Dur : 8 Ini Dp : 132.6 Fin Dp : 132.6	LY	SS :Od,Pr,Ec* Fe,Cl PR1:Od,Pr,Ec* ` fe,Cl	16/12/91 IN Tara		S	US	US	NS
Humara 13122410402	Dt: 11/01/86 Dp: 16.10	Date : 24/05/91 Meth : Air line Dur : 1.25 Ini Dp : 17.55 Fin Dp : 17.55	SY	SS :0d,Pr PR1:0K PR2:0K PR3:0K	26/05/86 IN2 OTC 24/05/91 IN2 SL		S	S	S	FS

.

· · · · · ·

5

. 1

¥.

X

¥.,

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusion, from Rehabilitation				
					Keinstallation		Depth	Yield	Chemistry	Results	
Bołakana 13122408505	Dt: 07/05/86 Dp: 32.31	Date : 17/05/91 Meth : Air line Dur : 1.5 Ini Dp : 28.35 Fin Dp : 30.60	SY	SS :Od,Pr, Ec*,Lo pH PR1:Ec* PR2:OK PR3:OK	31/05/86 1M2 OIC 17/05/91 IM2 SL		S	S	S	FS	
juał ipada 3122411206	Dt: 30/06/87 Dp: 40.00	Date : 28/05/91 Meth : Air line Dur : 2.0 Ini Dp : 20.00 Fin Dp : 20.00	SY	SS :Od,Ec* PR1:Ec* PR2:Ec* PR3:Pr,Ec*	08/10/86 INL SUC 17/04/90 TARA DA 28/05/91 TARA DA		US	S	US	DS.	
iual ipada 3122411207	Dt: 01/10/86 Dp: 20.50	Date : 27/05/91 Meth : Air line Dur : 7.5 Ini Dp : 9.00 Fin Dp : 16.50	SY	SS :Od,Pr,Ec* PR1:Ec* PR2:Ec* PR3:OK	20/05/87 1N2 27/05/91 1M2 SL		S	S	S	FS	
ual ipada 3122411208	Dt: 16/07/86 Dp: 33.95	Date : 08/05/91 Meth : Air line Dur : 4.0 Ini Dp : 33.35 Fin Dp : 33.40	SY	SS ::Ec,Cl PR1:0d,Ec,Cl PR2:Ec,Cl PR3:Ec,Cl	20/08/86 IN2 06/02/88 IMPVCBS 13/08/89 IMPVCBS 08/05/91 IM2 SL		S	S	US	NS	
udupailo 3122411302	Dt:30.06.86 Dp:140.5	Date : 20.11.91 Meth : Air Line Dur : 7.0 Ini Dp : 140.2 Fin Dp : 140.2	LY	SS :Dd,Pr PR1:Od	25/11/91 IMPVCSS	09/88- Chem, Donkey Pump Redev, 32 hrs.Improved	S	US	US	NS	

-

ı.

×,

ı.

- **X** 1

Table 2.34 : Detailed Rehabilitation Data & Results - Gualipada GP, Delang block

Site	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusions from Rehabilitation				
					Reinstallation		Depth	Yield	Chemistry	Results	
801akana 13122408501	Dt: 09/03/86 Dp: 32.50	Date : 19/04/91 Meth : Air line Dur : 3.0 Ini Dp : 31.70 Fin Dp : 31.90	SY	SS :Od,Ec* PR1:Od,Ec* PR2:Ec* PR3:Ec*,Lo pH PR4:Ec*	11/04/86 1M2 12/07/89 1MPVCSS 20/04/91 1M2 SL	07/89- Chem, Air lift 4.25 Lrs, S.	S	S	US	DS	
Bolakana 13122408502	Dt: 29/03/86 Dp: 32.50	Date : 19/04/91 Meth : Air line Dur : 2.5 Ini Dp : 31.85 Fin Dp : 31.86	SY	SS :Od,Ec" PR1:Ec" PR2:OK PR3:OK	22/04/86 IN2 13/07/89 IMPVCSS 20/04/91 IM2 SL	07/89- Chem, Air lift 5 hrs, S.	S	S	S	FS	
Bolakana 13122408503	Dt: 19/04/86 Dp: 32.30	Date : 22/04/91 Meth : Air line Dur : 2.25 Ini Dp : 28.95 Fin Dp : 29.30	SY	SS :Od,Pr,Ec" Lo pH,Fe PR1:Od,Pr,Ec" PR2:OK PR3:OK	15/05/86 IN2 OTC 09/07/87 IN2 22/04/91 IN2 SL		S	S	S	FS	
Bo]akana 13122408504	Dt: 24/04/86 Op: 32.40	Date : 22 to 24 & 27/04/91 Weth : Air line Dur : 9.75 Ini Dp : 31.77 Fin Dp : 24.96	SY	SS :0d,Pr PR1:Pr PR2:0K PR3:0K PR4:0K	02/05/86 IN2 DTC 27/04/91 IN2 SL	04/91-Airline hose stuck, abandoned. Pebbles dur- ing cleaning. Casing failure?	US	S	S	FS	

14

Y

Site	Drilling	Well Cleaning	Yield	Water Quality	Ринр	Rewarks	Conclusion	s from Reha	bilitation	
				· · · ·	Keinstallation		Depth	Yield	Chemistry	Results
Bilaspur 13122411401	Dt:21.04.86 Dp:110.5	Date : 12/11/91 Neth1 : Manual over pumping Dur 1 : Meht2 : Air Line Dur 2 : (9.5) Ini Op : 110.0 Fin Dp : 110.0	SY	SS :Od,Ec",Fe PR1:Ec",Fe PR2:Od,Pr, Ec",Fe	14.11.91 IN2 Tara	Nanual ov. pumping US Black slimy water with compressor use.Also fine sand then clean.	S	S	US	NS
Bilaspur 13122411402	Dt:10.09.86 Dp:100.5	Date : 04/10/91 Meth : Manual over pumping Dur : 20.5 Ini Dp : 110.2 Fin Dp : 110.2	SY	SS :NK PR1:Ec*,Fe PR2:Od,Ec*,Fe	04.10.91 IMPVCSS	R&D IRP site	S	S	US	NS
Bilaspur = 13122411403	Dt:20.08.86 0p:114.5	Date : 28/09/91 Meth : Manual over pumping Dur : 17.7 Ini Dp : 113.45 Fin Dp : 113.45	SA.	SS :NX PR1:Fe PR2:Fe PR3:Od,Fe	01.10.91 INPVCSS	R & D IRP.	S	5	US	NS
Thentena 13122410901	Dt:30.12.85 Dp:34.1	Date : 08/02/92 Heth : Manual over pumping Dur : 9.0 Ini Dp : 33.1 Fin Dp : 33.1	SY	SS :Pr PR1:MK	08.02.92 IM2 SL	Substantia) bentonite and fine sand cleared.	\$	S	NK	NK

Table 2.35 : Detailed Rehabilitation Data & Results - Sri Purushottampur GP , Delang block

.

•

X

X

					•			Annex 2, Pg		
Sile	Drilling	Well Cleaning	Yield	Water Quality	Pump	Remarks	Conclusio			
					Reinstallation		Depth	Yield	Chemistry	Results
Thentena 13122410902	Dt:09.01.86 Dp:39.95	Date : 07/02/92 Meth : Manual over pumping Dur : 9.0 Ini Dp : 39.5 Fin Dp : 39.5	SY	SS :Od,Pr,Fe PR1:NK	09.02.92 1M2 SL	Substantial bentonite and fine sand cleared.	S	S	NK	NK
Thentena 13122410903	Dt:03.10.86 Dp:40.38	Date : 10/02/92 Meth : Manual over pumping Dur : 10.0 Ini Dp : 38.0 Fin Dp : 38.0	SY	SS :Pr PR1:NK	10.02.92 1M2 SL	Substantial bentonite and fine sand cleared.	S	S	NK	NK

×.

Table 2.36 : Rehabilitation Data & Results - Sujanpur GP , Delang block

5ite	Drilling	Well Cleaning	Tield	Water Quality	Pump Reisstallation	Resarks	Conclusions from Rehabilitation					
							Depth	Yield	Chemistry	Results		
Ankula 13122406602	Dt:27.01.86 Dp:20.1	Date : 11.02.92 Meth : Manual over pumping Dur : 10.0 Ini Dp : 17.0 Pin Dp : 17.0	SY	SS :OR PR1:NK	11/02/92 Tara DA	Plenty of sand & some bentonite, then cleared.	S	S	NK	NK		

Ċ

.

 r^{\prime} I

¥~

ANNEXURE 3

Kenaptilitation Data & Kesults - Aul Dio
--

Site	Depth		Cleaning Hethod	Yield	d Water Quality Remarks		Reparks	Conclusions from Rehabilitation			
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch	Res
Balakati 06020718204	218.0	S	Air Ln	5¥	SS : Fe PR1: Fe	US		S	S	US.	KS
Balakati 06020718207	251.0	s	POP	21	SS : Fe PRI: OK	S		S	S	s	FS
Bhuinpur 06020720903	173.0	S	POP	54	SS : Fe PR1: Fe	US	Initially clay	S	S	US	KS
Bhuinpur 06020720909	169.0	S	Air Ln	SY	SS : Fe PR1: Fe	US		S	S	US	NS
Dema1 06020719903	232.0	s	Air Ln	LY	SS : Fe PR1: OK	S	V LY	S	US	S	NS
Desal 06020719906	234.3	US	Air Ln	LY	SS : Fe PR1: OK	S		US	US	S	NS
Demai 06020719907	248.0	S	Air Ln	LY	SS : Fe PR1: DK	S		S	US	S	KS
Lokapada 06020719507	238.0	S	1:Air Ln 2:POP	57	SS : Fe PR1: OK	S	Initially sand	S	S	S	FS
Nahoo 06020723303	141.0	s	Air Ln	SY	SS : Fe PR1: Fe	US		s	S	US	KS
Nahoo 06020723304	170.0	S	Air Ln	SY	SS : Fe PR1: OK	S		S	S	S	FS
Kaliapahada 06020719202	239.0	S	POP	SY	SS : Fe PR1: UK	S		S	S	S	FS
Alakani 06020719104	242.0	S	Air Ln	57	SS : Fe PR1: OK	S	Sand initially	S	S	S	FS
Gopalpur 06021004904	136.0	s	Air Ln	57	SS : Fe PR1: Fe	US		S	S	US	NS
Gopalpur 06021004905	138.0	S	Air Ln	SY	SS : Fe PR1: Fe	US		S	s	US	KS
Patrapur 06021002401	(15.0)	NK	Air Ln	SY	SS : Fe PR1: Fe	US	Fine sand	NK	s	US	KS

った

*

<u>7</u>**

Rehabilitation Results Summary - Chandbali block

Site	Depth		Cleaning Nethod	Yield	Water Quality		Renarks	Remarks Conclusions Rehabilitati		s fra tion	from ion	
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch	Res	
Paharpur 05102211902	208.0	JS	Air Ln	Very LY	SS :OK PR1:OK	S	Little silt	US	US	S	NS	
Patuli 05102211802	214.0	US	1:Air Ln 2:POP	LY	SS :C,T,P PR1:OK	S		US	IJS	S	NS	
Charadia 05102312601	180.0	S	Air Ln	54	SS :C PR1:OK	S		S	S	S	FS	
Charadia 05102312604	186.0	S	Air Ln	24	SS :C PR1:OK	S		S	S	S	FS	
Jaladharapur 05102313201	198.0	S	Air Ln	21	SS :OK PR1:Fe	S		S	S	US	NS	
Jaladharpur 05102313203	124.0	S	Air Ln	57	SS :OK PR1:OK	S		S	S	\$	FS	
Karanapokhari 05102311002	174.0	S	POP	51	SS :C PR1:OK	S		S	s	S	FS	
Karanapokhari 05102311003	201.0	US	Air Ln	LY	SS :C,Ec* PR1: OK	S	Casing break - 30 m ?	US	æ	S	HS	
Nalgohira 05102310901	176.0	\$	Air Ln	57	SS : C PR1: OK	S		S	S	S	FS	
Nalgohira 05102310902	178.0	S	Air Ln	57	SS : C PR1: OK	S		S	5	S	FS	
Nalgohira 05102310903	178.0	S	Air Ln	LY	SS : C PR1: OK	S		S	US	S	KS	
Nalgohira 05102310904	218.0	S	Air Ln	SY	SS : C PR1: OK	\$		S	S	S	FS	
Pokharisahi 05102310001	194.0	S	Air Ln	57	SS : C PR1: OK	S		S	S	S	FS	
Chasakhanda 05102202004	253.0	S	POP	21	SS : P PR1: OK	S	-	S	5	S	FS	
Malbada 05102201801	241.0	US	Air Ln	Very LY	SS : OK PR1: OK	S	Ned. sand. Casing break?	US	US	S	HS	
Matio 05102201903	242.0	S	Air Ln	57	SS : OK PR1: OK	S	Fine black sand	S	S	S	FS	

X

٩

Managari () Lativa) yang kangang la mengerangka (mengerangka mengerangka kang kang kang kang kang kang kang		Rehabilitation	Data 4	Results	- Abhayanuk	hi Ranachandraour	æ.	Delang	block
---	--	----------------	--------	---------	-------------	-------------------	----	--------	-------

	Site	Depth		Well Cleaning	Yield	Water Quality		Renarks	Conc Reha	lusio bilit	ns fro ation	ça
(c.		Drilled	Res.			Obsv. Res.			Dp	Y	Ch	Res
	Abhayamukhi Ramach.pur 13122507203	117.0	20	Air Ln	SA	SS:Od,Ec, Fe,Cl PR1:Od,Pr, Ec,Fe,Cl	20		US	S	US	NS
	Abhayamukhi Ramach.pur 13122507204	111.5	S	Air Ln	SY	SS :NK PR1:Pr,Ec, Fe,Cl	15		S	S	US	NS
	Abhayamukhi Ramach.pur 13122507205	110.5	S	Air Ln	SY	SS :P r PR1:NK	US	**	S	s	US	MS
7	Abhayamukhi Ramach.pur 13122507207	108.0	S	Air Ln	LY	SS :Ec,Fe,Cl PR1:Ec,Fe,Cl	us	Water during cleaning	S	US	US	NS
	1.purdeul i 13122506401	125.0	S	Air Ln	SY	SS :Od,Ec*,Fe PR1:NK	ĸ	Old IRP	s	s	HK	HK
	1.purdeul i 13122505402	114.5	S	Air Ln	SY	SS :Ec*,Fe,Cl PR1:Ec*,Fe,Cl	US		s	S	US	MS
	I.purdeul i 13122505413	118.5	S	Air Ln	SY	SS :0d,Pr,Ec, Fe,Cl PR1:Ec*,Fe,Cl	۶3		S	S	US	NS

X

Rehabilitation	Data a	Results	-	Beraboi	œ		Delang	block
-----------------------	--------	---------	---	---------	---	--	--------	-------

Site Depth		Well Yield Cleaning		Water Quality	Water Quality		s Conclusions f Rehabilitation				
	Drilled	Res.			Obsv.	Res		Dp	Y	նհ	Res
Ayatnadua 131224058101	36.50	S	Air Ln	SY	SS :Od,Pr,Fe PR1:OK PR2:OK	S		S	S	S	FS
Beraboi 13122408901	36.00	S	Air Ln	SA	SS :OK PR1:OK PR2:Pr PR3:OK PR4:OK	S		S	S	S	FS
Beraboi 13122408902	36.00	S	Air Ln	SY	SS :0K PR1:0K PR2:0K PR3:Pr PR4:Pr	IJS		S	S	บร	DS
Beraboi 13122408903	36.00	S	Air Ln	SY	SS :OK PR1:Pr PR2:Pr PR3:OK	US		S	S	US	DS
8eraboi 13122408904	40.00	S	Air Ln	SY	SS :Od,Pr,Fe PR1:Od PR2:OK PR3:Pr	US		S	S	US	05
Beraboi 13122408905 (Explo)	112.50	5	Air Ln	54	SS:HK PR1:0d,Fe PR2:0d,Fe PR3:Fe PR4:Fe PR5:0d,Pr,Fe PR6:0d,Pr,Fe	US	Coarse sand	S	S -	US	IIS
Beraboi 13122408941	WK.	HK	Air Ln	SY	SS :0K PR1:0K PR2:0d PR3:0X PR4:0K	S		NK	S	S	PS
Brahmeswarpur 13122409001	32.13	S	Air Ln	SA	SS :0d,Pr,Fe PR1:0K PR2:0K PR3:0K	S		S	S	S	FS
Bual i 13122405701	31.75	S	Air Ln	SY	SS :0d,Pr,Fe PR1:0K PR2:0X PP3:0K	S		S	S	S	FS

Site	Depth		th Vell Yield Cleaning		Nater Quality		Renarks	Conclusions fro Rehabilitation			fron n
	Drilled	Res.			Obsv.	Res		Dp	Y	Ch	Res
Damapur 13122408601	32.00	S	Air Ln	SY	SS :Ec* PR1:Pr,Ec* PR2:Ec* PR3:Ec* PR4:Pr,Ec*	US	07/89- Ch+Air sand, US,LY	S	S	US	DS
Damapur 13122408602	30.25	S	Air Ln	SY	SS :OK PR1:Od PR2:OK PR3:OK	S		S	S	S	FS
Jokanarua 13122409401	36.00	S	Air Ln	SY	SS :0d,Pr PR1:0d PR2:0K PR3:Pr	us	Coarse sand	S	S	US	DS
Jokanarua 13122409402	36.00	S	Air Ln	SY	SS :Od,Pr PR1:Od PR2:OK PR3:OK	5		S	S	5	FS
Manijipur 13122408401	28.10	S	Air Ln	SY	SS :Od,Pr,Fe PR1:Od PR2:OK PR3:OK PR4:OK PR4:OK	S	Ned. & fine sand	S	S	S	FS
Odataraboʻi 13122409101	35.00	S	Air Ln	SY	SS :NK PR1:0d PR2:0K PR3:0K	2	11/89- Ch+Air sand, US.	5	S	S	FS
Odataraboi 13122409102	34.00	S	Air Ln	SY	SS :Od,Pr,Fe PR1:Pr PR2:OK PR3:Pr	US	11/89- Che+Air US, 2nd try S.	S	5	US	DS
Odataraboi 13122409103	34.00	5	Air Ln	SY	SS :OK PR1:OK PR2:OK	S	Coarse to med. sand	S	S	5	FS
Pirhapatana 13122409701	36.00	S	Air Ln	SY	SS :0d,Pr PR1:0K PR2:0K PR3:0K PR4:0K	S	Coarse sand, pebbles	S	S	S	FS
Pirhapatana - 13122409702	36.00	S	Air Ln	SY	SS :CK PR1:Dd PR2:CK	32		S	S	S	FS

Ť

Å

-

Site	Depth	Depth		Depth Well Cleaning		Yield	Water Quality		Renarks	Conc Reha	lusia bili	ons (tatio	from n
	Drilled	Res.			Obsv.	Res		Dp	Y	Ch	Res		
Pirhapatana 13122409741	HK	NK	Air Ln	SY	SS :OK PR1:OK PR2:OK	S		NK	S	S	PS		
Praharajpur 13122409601	36.00	S	Air Ln	SY	SS :Od,Pr PR1:OK PR2:OK PR3:OK	S		S	5	S	FS		
Praharajpur 13122409602	36.00	S	Air Ln	SY	SS :Od,Pr PR1:OK PR2:OK PR3:OK PR4:OK PR5:OK	S		S	S	S	FS		
Praharajpur 13122409603	36.00	S	Air Ln	57	SS :OK PR1:Od PR2:OK PR3:OK	S		S	S	S	FS		
Praharajpur 13122409604	40.00	S	Air Ln	SY	SS :0K PR1:0d PR2:0K PR3:0K	S		S	S	S	FS		
Praharajpur 13122409605	40.00	S	Air Ln	SY	SS :Pr PR1:0K PR2:0K PR3:0K	S		S	S	S	FS		
Rencha 13122409301	40.00	S	Air Ln	SY	SS :0d,Pr PR1:0d PR2:0K PR3:0K	S	12/89- Ch+Air S.	S	3	S	FS		
Rencha 13122409302	36.00	S	Air Ln	LY	SS :0d,Pr PR1:Pr PR2:0d PR3:Pr	US	11/89- Che+Air 2 tries LY	S	æ	US	NS		
Rencha 13122409303	40.00	S	Air Ln	24	SS :0K PR1:0d PR2:0d PR3:0K	<u>کل</u> ا	12/89- Ch+Air US.	S	S	US	DS		
Rencha 13122409304	36.00	S	Air Ln	21	SS :OK PR1:Pr PR2:OK PR3:Pr	US	07/89- Ch+Air S.	S	\$	US	DS		

<u>~</u>___

ن. رود

Site	Depth		Vell Yield Cleaning		Water Quality		Resarks	Conclusions from Rehabilitation				
	Drilled	Res.			Obsv.	Res		Dp	Y	Ch	Res	
Rencha 13122409305	36.10	S	Air Ln	SY	SS :NK PR1:OK PR2:OK PR3:Od,Pr	US	11/89- C:+Air, S.	S	S	US	DS	
Udayapur 13122408801	36.00	S	Air Ln	LY	SS :OK PR1:Dd PR2:OK PR3:OK PR4:OK PR5:OK PR5:OK	S		S	US	S	NS	

Rehabilitation Data & Results - Chainpur GP , Delang block

Site	Depth		Cleaning Yiel Nethod		Yield Water Quality		Remarks	Conclusions from Rehabilitation				
	Drilled	Res.	1		Obsv.	Res.	-	Dp	Y	Ch	Res	
Ankoʻi 13122404201	18.95	S	Air Ln	SY	SS :Lo pH PR1:NK	HK		S	S	NK	NK	
Aniko i 13122404202	24.0	S	Air Ln	SY	SS :Pr,Lo pH PR1:Lo pH	US		S	S	US	NS	
Ankoi 13122404203	15.98	S	Air Ln	SY	SS :Lo pH PR1:Pr,Lo pH	US		S	5	US	NS	
Ankoi 13122404204	21.15	S	Air Ln	LY	SS :Od,Pr, Lo pH,Fe PR1:Lo pH	US	Slight turb. contd.	S	US	US	NS	
Ankoi 13122404205	KK.		Air Ln	SY	SS :Od,Pr, Lo pH,Fe PR1:Lo pH	US			S	US	NS	
Ankoi 13122404241	NK .	MK	Air Ln	SY	SS :Pr,Lo pH Fe PR1:Pr,Lo pH Fe	US	Sand. Turb. after reinst	NK	S	US	NS	
Gadamotari 13122403901	50.4	S	Air Ln	LY	SS :Lo pH,Fe PR1:NK	NK	Black sand LY, Depletion	S	US	NK	NS	
Gadamotari 13122403902	3.0	S	Air Ln	SY	SS :Lo pH,Fe PR1:Lo pH	US		s	S	US	NS	

×

The second

*

Annex 3, Pg 8

Site	e Depth		Depth C		Cleaning Nethod	Yield	Water Quality		Remarks	Conc Reha	lusio bilit	ns f ation	roe
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch]	Res		
Gadamotari 13122403903	46.0	US	Air Ln	LY	SS :NK PR1:Pr,Lo pH	บร		US	US	US	NS		
Gadamotari 13122403906	HK	NK	Air Ln	LY	SS :MK PR1:Lo pH,Fe	US	Depletion	NK	US	US	NS		
Bartol 13122403801	48.0	S	Air Ln	LY	SS :Dd,Pr, Lo pH,Fe PR1: NK	NK		S	US	HK	MS		
Bartol 13122403802	40.0	S	Air Ln	SY	SS :Pr,Lo pH Fe PR1:MK	Ж		S	S	ĸ	NK		
Bartol 13122403803	46.0	S	Air Ln	LY	SS :Pr.Lo pH Fe PR1:Lo pH	US		S	US	ß	WS		
Bartol 13122403804	69.0	US	Air Ln	LY	SS :Turb, Lo pH,Fe PR1:NK	HK	Sand, LY.	US	υs	NK	NS		
Kusunda] 13122403701	28.3	S	Air Ln	SY	SS :Pr.Lo pH Fe PR1:Pr.Lo pH	US		S	S	US	DS		
Kumundal 13122403702	34.0	S	Air Ln	SY	SS :Od,Pr, Lo pH,Fe PR1:Pr,Lo pH	US		s	5	US	DS		
Kupundal 13122403703	40.0	S	Air Ln		SS :Pr.Fe PR1:Pr.Lo pH	US		S	S	เร	MS		

Ž.

ĺ.
Rehabilitation Data & Results - Gualipada GP , Delang block

7

-J

Site	Depth		Cleaning Yi		Water Quality	er Quality Remark		Conc Reha	lusia bilii	ons l tatio	from n
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch	Res
Bo) akana 13122408501	32.50	S	Air Ln	SY	SS :Od,Ec* PR1:Od,Ec* PR2:Ec* PR3:Ec*,Lo pH PR4:Ec*	US	07/89- Ch +Air Ln, S.	S	S	US	DS
Bol akana 13122408502	32.50	S	Air Ln	54	SS :Od,Ec* PR1:Ec* PR2:OK PR3:OK	S	07/89- Ch + Air Ln, S.	S	S	S	FS
Bolakana 13122408503	32.30	S	Air Ln	SY	SS :Od,Pr,Ec" Lo pH,Fe PR1:Od,Pr,Ec" PR2:OK PR3:OK	S		S	S	S	FS
Bolakana 13122408504	32.40	US	Air Ln	SY	SS :0d,Pr PR1:Pr PR2:0K PR3:0K PR4:0K	5	Air Ln stuck, abandoned. Pebbles Casing failure?	US	S	S	PS
Bolakana 13122408505	32.31	S	Air Ln	SY	SS :Od,Pr, Ec°,Lo pH PR1:Ec° PR2:OK PR3:OK	S		S	S	S	FS
Gual ipada 13122411206	40.00	US	Air Ln	24	SS :Dd,Ec* PR1:Ec* PR2:Ec* PR3:Pr,Ec*	US		US	S	US	DS
Gual ipada 13122411207	20.50	S	- Air Ln	SY	SS :Od,Pr,Ec* PR1:Ec* PR2:Ec* PR3:OK	S		S	S	S	FS
Gual ipada 13122411208	33.95	S	Air Ln	SY	SS :Ec,Cl PR1:0d,Ec,Cl PR2:Ec,Cl PR3:Ec,Cl	US		S	S	US	NS
Gucupailo 13122411302	140.5	S	Air Ln	LY	SS :0d,Pr PR1:0d	צני	09/88- Ch+ Dn Pm, improved	S	US	US	NS
Gudupailo 13122411303	150.5	US	мор	LY	SS :0d PR1:Pr	US	12/91-Well blocked at 30 m BGL.	US	US	US	NS

Site	Depth		Cleaning	Yield	Water Quality		Remarks	Con Rehi	lusi bili	ons i tatio	froe n
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch	Res
Gudupailo 13122411304	136.5	S	POP	LY	SS :Od,Pr,Ec, Fe,Cl PR1:Pr	US	10/88- Ch+ Dn Pm,US. 12/89- Ch, Air lift, US.	S	US	US	NS
Gudupailo 13122411305	36.5	S	NOP	LY	SS :Od,Pr,Ec* Fe,Cl PR1:Od,Pr,Ec* Fe,Cl	US		S	US	US	NS
Humara 13122410402	16.10	S	Air Ln	SA	SS :Od,Pr PR1:OK PR2:OK PR3:OK	S		S	S	S	FS
Humara 13122410403	40.00	S	Air Ln	No yield	SS :Pr PR1:OK PR2:OK	S		S	US	S	NS
Humara 13122410405	41.90	S	Air Ln	SY	SS :0d,Pr PR1:0K PR2:0K PR3:0K	S		5	S	S	FS
Machapada 13122411001	38.50	S	Air Ln	57	SS :0d,Pr, Ec",fe PR1:Ec" PR2:Ec" PR3:Ec"	US		S	S	US	DS
Nachapada 13122411003	17.90	S	Air Ln	SY	SS :0d,Pr PR1:0K PR2:0K PR3:0K	5		S	S	S	FS
Nachapada 13122411005	15.60	S	Air Ln	SY	SS :OK PR1:OK PR2:OK PR3:OK	S		S	S	S	FS
Panchupala 13122408701	40.95	S	Air Ln	SY	SS :0d,Pr, Ec*,Cl, PR1:Ec*,Cl PR2:Ec*,Cl PR3:Ec*,Cl	US		S	S	US	NS
Panchupala 13122408702	40.75	S	Air Ln	SY	SS :0d.Pr,Ec* PR1:Ec* PR2:0K PR3:Ec*	US		S	S	US	DS

-- --

7

۴

Rehabilitation Data & Resu	ilts – Sr	i Purushottampur	€₽	, Delang	; blo	d
----------------------------	-----------	------------------	----	----------	-------	---

Site	Depth		Cleaning Wethod	Yiel d	Water Quality		Renarks	Conclusions from Rehabilitation				
	Drilled	Res.]		Obsv.	Res.		Dp	Y	Ch	Res	
Bilaspur 13122411401	110.5	S	1:NOP 2:Air Ln	SY	SS :Od,Ec*,Fe PR1:Ec*,Fe PR2:Od,Pr, Ec*,Fe	US	NOP US Dirty water + sand with air line	S	S	US	NS	
Bilaspur 13122411402	100.5	S	NOP	SY	SS :NK PR1:Ec*,Fe PR2:Dd,Ec*,Fe	US		S	S	US	NS	
Bilaspur 13172411403	114.5	S	NOP	SY	SS :NK PR1:Fe PR2:Fe PR3:Dd,Fe	US		S	S	US	NS	
Thentena 13122410901	34.1	2	NOP	SY	SS :Pr PR1:NK	HK	Bentonite fine sand	S	5	NIK	NK	
Thentena 13122410902	39.95	S	NOP	SY	SS :0d,Pr,Fe PR1:NK	NK	Bentonite fine sand	s	S	NK	NK	
Thentena 13122410903	40.38	S	NOP	SY	SS :Pr PR1:NK	NK	Bentonite fine sand	S	S	NK	NK	

Rehabilitation Data & Results - Sujanpur GP , Delang block

Site	Depth		Cleaning Nethod	Yield	Water Quali	Water Quality		Conc Reh	Conclusions from Rehabilitation				
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch	Res		
Ankula 13122406602 Sujanpur GP	20.1	S	мор	SY	SS :OK PR1:NK	MK	Sand, bent- onite	3	S	HK.	NK		

7

Ť,

*

Rehabil itation	Data I	Results	- Kanas	block
-----------------	--------	---------	---------	-------

Site Depth			Cleaning Nethod	Yield	Water Quality		Remarks	Conc' Reha	lusion bilita	s fro ition	
	Drilled	Res.			Obsv.	Res.		Dp	Y	Ch	Res
Adala 13172601001	103.0	S	1:Air Ln 2:POP	SY	SS :Lo pH, Fe PR1:Fe	US			S	US	NS
Adala 13172601004	102.0	S	Air Ln	LY	SS :Ec*,Fe PR1:Fe	US	Initially SY, then depletion	S	US	US	NS
Adala 13172601005	109.0	S	Air Ln	Sï	SS :Lo pH, Fe PR1:Fe	US		S	S	US	NS
Badala 13172601101	98.0	S	Air Ln	SY	SS :fe PR1:fe	US -	Initially SY, then depletion.	S	S	US	NS
8ada1a 13172501103	104.0	S	Air Ln	LY	SS :Fe PR1:Fe	US	1200 lit water added	S	US	US	NS
Badala 13172501104	103.0	เร	Air Ln	ι.Υ	SS :fe PR1:Fe	US		US	US	US	NS
Badala 13072501109	111.0	S	1.Air Ln 2.POP	LY	SS :Ec*,Fe PR1:Ec*,Fe	US		S	US	US	NS
Dochian 13172600701	108.0	5	Air Ln	SY	SS :Fe PR1:DK	S		S	S	S	FS
Dochian 13172600703	115.0	S	Air Ln	SY	SS :NK PR1:NK	HK	Fine sand	S	S	K	DS
Dochian 13172600704	104.0	S	Air Ln	LY	SS :Fe PR1:Fe	us		S	US	US	NS
Khuntia- banapur 13172600901	91.0	S	Air Ln	SY	SS :Lo pH, Fe PR1:Fe	US		S	S	US	NS
Khuntia- banapur 13172600903	88.0	S	Air Ln	SY	SS :Lo pH, Ec*,Fe PR1:Ec*,Fe	US		S	S	US	NS
Khuntia- banapur 13172600904	87.0	S	Air Ln	SY	SS :Fe PR1:Fe	US		s	S	US	NS

. .

Site	Depth		Cleaning Nethod	Yield	Water Quality	/	Rénarks	Conc Reha	lusior biliti	is fro ition	
	Drilled	Res.			Obsv.	Res.		Dp	Y	նհ	Res
Gadakharada 13172600153	NK	NK	Air Ln	SY	SS :NK PR1:NK	NK	Rejuv. wl. clay, fine & wed.sand & scales. Sand contd.	HK	S	HK	HK
8hatpada 13172601401	97.0	S	Air Ln	57	SS :Lo pH, Fe PR1:fe	US	Fine sand	S	S	US	DS
Bhatpada 13172601402	102.0	S	Air Ln	SX	SS :Lo pH, Fe PR1:Fe	US		s	S	US	DS
Kadua 13172601303	100.0	S	Air Ln	21	SS :Lo pH, Fe PR1:Fe	ß	Sand	S	S	บร	DS
Anjira 13172601852	HOK	NK	Air Ln	SY	SS :MC PR1:MC	MK	Rejuv. wl. Clay & sand came out.	NK	S	HX.	NX
Sahoopada 13172601602	92.0	S	Air Ln	LY	SS :Fe PR1:Fe	US	Depletion. 1200 lit water added	S	US	υs	NS
Sahoopada 13172601603	92.0	S	Air Ln	LY	SS :Lo pH, Fe PR1:Lo pH, Fe	US	2000 lit water added.	S	US	υs	NS
Sahoopada 13172601604	91.0	S	Air Ln	LY	SS :Fe PR1:Fe	US	3000 lit water added. Clay & laterite granules.	S	US	US	нs
Sahoopada 13172601605	90.0	S	Air Ln	SY	SS :La pH, Fe PR1:La pH, Fe	US	Sand. 3000 lit water added.	S	S	US	KS

Ť

ANNEXURE 4

7. Type of Pump installed:

Sl. No.	Date	Ршар Туре	Remarks
7.1			
1.2			

Status Survey Results

8.	Pump Condition:	••
9.	Pump Utilisation:	• •
10.	Chemical Analysis Results:	• •
11.	Rehabilitation Required:	• •

Rehabilitation Work Record Summary:

1	Well	details	3 :										
1.1		Date of	pump rem	noval	l: .	•••	• •	• •	•••	••	•	• •	
1.2		Well der	oth measu	ired	•	• •	• •	• •	. m				
1.3		Depth me	easured a	after	r in:	itia	l cl	eani	.ng:	•••	•	. m	
1.4		Method	of init:	ial d	lea	ning	. .	••	• •	• •	• •	• •	•
1.5		Duratio	on:	• •			• •	•		h	rs.	/mir	n.
2	Cher	aicals u	sed :							1. A.			
	S1. Mo.	Date	NaOC1 lit	Na ₂ CO ₃ Kg		STP Kg						. •	
	2.1	*****	••••	•••••					• • • • • • • •				
	2.2	* * * * *	• • • • •			•••••		*****					
3	Well c	leaning :											
	51. Mo.	Date	Kethod		Durati (br/mi	оа л)	Result (Satis	factor	y/Onsati	sfactory	•)		
	3.1		•••••	•	•••••	•••		•••••	• • • • • • • • •	••			
	3.2		•••••	•	• • • • • •	•••		•••••	•••••	••			
	3.3		•••••	•	•••••	•••	•••••	•••••	•••••••	••			
4	Res	ults of	well cle	anin	g								
4.1 4.2 4.3 4.4		Full we Yield w Water w Water w	ll depth as more as clear as odour	was than & c less	rea 15 olou	ched lpm rles	8	: : :	Үев Үев Үев Үев	/ No / No / No / No			
5	Pun	p reins	tallati	on d	leta	ils							
5.1	,	Date:	• • • •	• •	• •	• •	- •	•	• •	••	•	• •	•
5.2		Water	level (t	D.g.	1.)	in	well	l :	•	• •	•	• •	
5.3	i	Pump T	ype deta	ails	:	••	•	• •	• •	• •	•	• •	٠
6	Not	es on P	latform	/Dra	ain/	etc.	. : .	• •	• •	• •	-		•

WATER CHEMISTRY RECORD :

Block :..... G.P:....

Village:..... Pump Regd.No :

Test No.	0do- ur	True Col- our	Par- tic- les	Tur- bid- ity	pH	EC	fe++	C1		
Results	from SI	atus Sur	vey Dat	te of Obs	ervatio	ns:	F	ield Chemi	st:	
1.										
2.										
3.										
Post-Re	habilita	ation Res	ults	Date :		Field	Chemist:			
1.										
2.										
3.										
Post-R	habilit	ation Res	ults	Date:		Field	Chemist:			
1.										
2.										
3.										
Post-R	ehabilit	ation Res	sults	Date:		Field	d Chemist:			
1.										
2.	<u> </u>	<u> </u>	<u> </u>							
3.	ļ									
Post-R	ehabilit	ation Re:	sults	Date:		Field	d Chemist:		-	
1.									·	
2.									-	
3.										
Post-R	ehabilit	ation Re	sults	Date:		Fiel	d Chemist:			
1.										
2.										
3.										
Post-R	ehabilit	ation Re	sults	Date:		Fiel	d Chemist:			
1.										
2.	T									
3.										

Codes:

Annex 4, Pg 4

.

•

.

Detailed Time Record of Redevelopment

.

SL. No.	Date	Cremica	l Treatment	Ait pressure applied				Observations	: - المحقق : - المحقق : ا	
		41-	Name &	Time Record			Pres-		$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{$	
		THE	Coantry	Start	Stop	Duration	2416		.	
				1						
ļ			<u> </u>	<u> </u>	 				· · · · · · · · · · · · · · · · · · ·	
 	<u> </u>				<u> </u>		<u> </u>		1	
 			·.					······································		
								•		
	+						+		and the second	
									· · · ·	
	1	1			1			•••		
									-	
	4					-				
									-	
	{								Y	
				_	<u> </u>				-	
-				_						

AND PUMP REMOVAL	Annex 4, Pg 5
locic Da	te:
.P., Village, Hab.;	
egn. No.:	_
· · · · · · · · · · · · · · · · · · ·	
	o f
<u> </u>	
Condition of Pipes	Condition of Rods
Pine No I	Rod No I
Pipe No.2	Rod No.2
· ·	
Pipe No.3	Rod No.3
Pipe No.4	Rod No.4
Pipe No.5	Rod No.5
	Red No 6
Pipe No.0	Kod No.0
Pipe No.7	Rod No.7
	•
Pipe No.8	Rod No.8
Culinder	T Plunger Rod
·	<u> </u>
	1
Notes:	
·····	
Propagat her	Date

.

<u>.</u>

7

÷

FIELD NOTE SHEET HAND PUMP REINSTALLATION

Date: Block: G.P., Village, Hab .: Regn. No.: Condition of Pipes Condition of Rods Pipe No.1 Rod No.1 Pipe No.2 - Rod No.2..... - Rod No.3..... Pipe No.3. Pipe No.4 - Rod No.4..... Pipe No.5 - Rod No.5...... Pipe No.6..... Rod No.G. Pipe No.7..... - Rod No.7..... Pipe No.8..... - Rod No.8..... Plunger Rod Cylinder Notes: .

Prepared by:..... Date:....

Procedure for Chemical Treatment

Before well cleaning or redevelopment, the tube well needs to be chemically treated for sterilising the well against bacterial growth that may have occurred. The chemical commonly used is Sodium Hypochlorite in combination with Sodium Carbonate. The specific functions of these chemicals are as follows:

1.1

Sodium Hypochlorite (NaOCl) is particularly effective for well sterilisation, especially in wells containing organisms like Sulphate reducing bacteria, and Iron bacteria. The Chlorine concentration required in the well is 1000 ppm. To obtain this concentration, the following formula is useful:

				Desired Concentration
Weight of	Ξ	Volume of water	X	
NaOCI (Kg)		in well (liters)		Concentration of Cl in Sterilant

If available Chlorine in Sodium Hypochlorite solution is 5.25 %, then :

0.001 Weight of = Volume of water X ------NaOCl (Kg) in well (liters) 0.0525

- 1.2 Sodium Carbonate (Na₂CO₃) is used as a wetting agent (ref: Pg.4, item 7.1, IS:11632-1986)along with the use of Phosphates which are sometimes glassy. The use of 1 Kg. of Sodium Carbonate is recommended per 400 liters of water in the well.
- 1.3 Sodium Tripolyphosphate STP (Na₅P₃O₁₀) is effective for removal of Bentonite stresses and clay particles from the formation and will help in dispersing the remanent of drilling mud around the well screen area. The recommended usage is 3.5 Kg. to 4.5 Kg. per 400 liters of water in the well. This chemical will be used only in the cases of low yielding wells. STP can be applied in the well by first mixing it with Calcium Carbonate in warm water then adding Sodium Hypochlorite to the suspension.
- 2. Application of Sodium Hypochlorite & its Removal:

Step 1: The calculated quantity of Sodium Hypochlorite is mixed in a plastic bucket of 15 liters capacity, with water and

×,

is stirred well. The person mixing the solution should use gloves and cover his face with a cloth against the strong smell of chlorine gas that comes from this chemical.

Step 2: The solution is diluted with 5 times its volume of water and injected at the strainer depth by means of a 25 mm diameter pipe lowered in the well to the well bottom (ref: Pg.5, item 7.1, Para 8, IS: 11632-1986). The solution has a higher specific gravity and displaces water upward and outward from the well as the pipe is raised and lowered repeatedly by about 1.5 m.

Step 3:

When the solution is placed at the screen, the drop pipe is removed. Then about 100 liters of water (about half the volume of water in 15 m length of 125 mm dia upper well casing) is slowly poured directly into the upper well casing (and through the drop pipe) to displace the solution from the screen and force it into the formation. Use of a surge plunger could be made, if available, as per guidelines on Pg.5, item 7.1, Para 8, IS:11632-1986.

Step 4: The tube well is kept capped overnight with chemicals in the well.

Step 5: The next day, the well is cleaned by backwashing and/or over pumping.

Step 6:

A test for residual Chlorine is conducted using Ortho Toliodine reagent. If residual Chlorine is present in the well water, then a drop of the reagent will turn red when introduced into a small sample (5 ml) of the well water. When the flushed water is free from residual Chlorine, the reagent will not change colour and the hand pump can be reinstalled.

3. Application of Sodium Tripolyphosphate & its Removal:

Sodium Tripolyphosphate is usually applied along with Sodium Carbonate as a wetting agent and in combination with Sodium Hypochlorite as the sterlising agent. The method of application and removal of the chemicals is the same as in the case of Sodium Hypochlorite. However the mixing of the chemicals has to be different.

Sodium Tripolyphosphate has to be carefully mixed before application. This is because STP, if not mixed properly

Annex 4, Pg 9

and clog well screen almost permanently. A solution is prepared in a plastic bucket of 15 liters capacity, with warm water and is stirred well. The solution is then sieved through a plastic mesh of 150 mesh size. This is an absolute precondition to the application of Sodium Tripolyphosphate.

The calculated quantities of Sodium Hypochlorite and Sodium Carbonate are mixed independently in separate buckets, thoroughly by hand, but using rubber gloves.

The solutions of the 3 reagents are then mixed together and then applied to the well, following Steps 2 to 4 outlined above and removed as mentioned in Steps 5 & 6.