SARVODAYA

RURAL TECHNICAL SERVICES

CORRESPONDENCE COURSE
ON THE
CALCULATION \& DESIGN

OF

GRAVITY WATER SUPPLY SCHEMES

LANKA JATHIKA SARVODAYA SHRAMADANA SANCAMAYA (Inc.)

```
SUMMARY OF THE
GRAVITY WATER SUPPLY DESICN &
HYDRAULIC CORRESPONDENCE COURSE
```


PREFACE

This summary contains all the theory and exercise lessons with respective solutions to the Gravity Water Supply Design \& Hydraulic Correspondence Course implemented in 1989. This edition is intended as a practical reference book for design and calculation of Village Water Supplies in rural areas, and in particular for SRTS technicians, who have followed this course.

Sri Lanka, August 1989
Heine Pfiffner
Technical Advisor SRTS
PAGE:
ABBREVIATION 3
STANDARD FORMS 4
LESSON NO 1 : INTAKE OF SPRINGS 13
DIMENSIONING OF SEDTMENTATION CHAMBER 15
LESSON NO 2 : DESIGN PERIOD, POPULATION, WATER DEMAND 17DESIGN FLOW OF MAINLINE
SILTBOX - STORACE TANK 19
LESSON NO 3 : CAPACITY DESIGN OF STORAGE TANKS 22
DISTRIBUTION RATIO 24
LESSON NO 4 : TOPOGRAPHIC SURVEYING 2.7
FLOW RATE, PIPELTNE DESIGN 28
LESSON NO 5 : COMBINATTON OF PIPE SIZES
DIAGRAMMATICAL AND ARITIMETICAI. METHOD 33
PIPELINE DESIGN, IYDRAULTC PROFILE 35
LESSON NO $6:$ EXERCISE $14 / a$, STANDARD FORM
"TECHNICAL INFORMATION" 39
FLOW RATES 37
EXERCISE $14 / b$ STANDARD FORM "TECHNICAL INFORMATION" 43
FLOW RATES 41
FINAL TEST 45

```
HBG = Handbook of Gravity-Flow Water Systems (Thomas D. Jordan Jnr.)
MST = Manual of Standardization VWS (Sarvodaya Rural Technical Services)
WHO = Worlds Health Organization
HGL = Hydraulic Grade Line
```

Q $\quad=$ Flow
L = Distance
H = Head, Height
$\emptyset \quad=$ (Pipe) Diameter
Qmin. = Minimum Flow
Qmax. = Maximum Flow
Qreq. = Required Flow (Design Flow)
$1 / \mathrm{sec} .=$ Litre per Second
$1 /$ min. $=$ Litre per Minute
1/day = Litre per Day
$\mathrm{m} / \mathrm{sec}$. = Meter per Second (Velocity)

FORMS:

Form $A=$ Preliminary Survey \quad (Form $A-F$ available in MST)	
Form $B=$ Spring Measurements	
Form $C=$ Friction Losses in PVC Pipes	
Form $D=$ Hydraulic Profile	
Form $E=$ Symbols for Situation Plan	
Form $F=$ Headloss throgh Orifice	
Form $G=$ Hydraulic Calculation Variants	
Form II $=$	Survey (Situation \& Hydraulic)
Form $I=$	Technical Information (I/a)
	Technical Information (T/b)

SARVODAYA RURAL TECHNICAL SERVICES
STANDARD PLANS / REVISED 1988
(Type A : Entrance door, steel)
(Type B : Manhole, concrete)

Form A:

PRELIMINARY SURVEY FOR VILLAGE WATER SUPPLIES

Name of village:
Divisional Centre responsible:
District/Electorate/Area
Population:
Infrastructure:
Sarvodaya activities/previous shramadana work:

Present water condition:
Type of sources available:
Altitude source:................................. Altitude consumers:
Protection zone for springs:

S 3:........................ s 4: \qquad
Months of dry season:
Name and address of contact person: \qquad

Remarks:
\qquad
\qquad
Name of Surveyor:
Date:
Overleaf: Handsketch about the project area and the sources

Form B

Name of village:

Remarks: Use for all measurements the same bucket. Measure the spring at least every week once at the same spot. Write in the list above the time it takes to fill the bucket. Write beside the volume of the bucket or give its dimensions.


```
8800 cm {
```


How to iese tine
Erawir：：
rxanole：
cesion Flcw $=0.8 \mathrm{t}$
Fipe tencti＝ 120°
Seiectec F 上下
$=40 \mathrm{~F}$（ISO）
Fどーニ゙on toss＝？

From D＝Evise

Kesule：
Fr．Loss：
Tcte
Tcta－Loss：
$120 \pi \times \frac{2 \cdot 55}{100 T}=\frac{3}{=}=12$

 hoter et 10 こ（こった

SYMBOLS FOR DRAWINGS

Form F

Headloss through an Orifice in a Pipe

 ∞ 以
A simple way of regulating the flow at tapstands in case of excessive hydraulic head is through the installation of an orifice plate，i．e．a plate made from brass，into the pipe leading to the tap．

Oぶ乌ed Ectooonc
$D_{0}=$ ORLACF DMAMETER

> ND = Acmunal Dn+metter
> or prue plpe
$D_{l}=$ WTGRNAL DUWETKR
OF AYC DIPE
 －2ర రఢృ
The headloss through an orifice is dependent on the pipe diameter，size of orifice，and the flowrate through the pipe．

 கీ๔ex
For a design flow of $0.21 / \mathrm{sec}$（standard design flow for a tap in SRTS projects），and for nominal pipe diameters of $\mathbf{2 0}$ to $\mathbf{2 5} \mathbf{~ m m}$ ，the following approximate headlosses may be ohtained：

రsicact రిczu0es D_{0}（3．0．） Orifice Diameter Do（mm）	Headloss through Orifice（m）
3.5	59
4.0	34
4.5	21
5.0	13.5
5.5	
6.0	6.5

V.W. S. of:
Date:
Sheet:

-	$\begin{array}{\|c} \\ \hline \text { postance } \\ \hline 1 \mathrm{c} \\ \hline \end{array}$		$\left.\right\|_{\text {mpe }} ^{\text {pen }}$	${ }_{\text {Top }}^{\text {Top }}$	$\left.\right\|_{\text {forem }} ^{\text {foits }}$			frition	come	Renars
						-	-			
		-		-						
				-			-			

Village:... District:

Name of Project

District	:..............	Sources:	Dry Season:	Wet Season:
Population	:.........	Spring	1/sec	$1 / \mathrm{sec}$
	:.........	Spring	$1 / \mathrm{sec}$	$1 / \mathrm{sec}$
...........	:	Spring	1/sec	1/sec
	:..........		1/sec	1/sec
............	:.........	Total Yield:	$1 / \mathrm{sec}$	1/sec

WATER DEMAND

WATER BALANCE DRY SEASON

Total yield $1 / \mathrm{sec} \times 60 \times 60 \times 24 \mathrm{hrs}=.$.
Water demand incl. Growthfactor
Estimated overflow / shortage

WATER BALANCE WFTT SEASON

Total yield1/sec x $60 \times 60 \times 24$ hrs $=.$.
Water demand incl. Growthfactor
$=\ldots . . .$.
Estimated overflow / shortage
=

SEDIMENTATION CHAMBER (Siltbox)

Inlet Qmax wet season	$(1 / \sec \times 60 \times 20)$
Inlet Qmin dry season	$(1 / \sec \times 60 \times 20)$
Outlet $Q_{\text {max }}$ of Designflow $(1 / \sec \times 60 \times 20)$	

Volume chosen

Siltbox 1	Siltbox 2
.l/20min.1/20min.
.1/20min. $1 / 20_{\text {ninin }}$
.1/20min.l/20min.
.......... L L

DESIGN FLOWS

Mainline Siltbox - St. Tank 1

$$
\text { Mainline Siltbox - St. Tank } 2
$$

Mainline Siltbox - Distr. Chamber

$$
\begin{aligned}
& =-\frac{1 / \mathrm{day}}{86400} \mathrm{sec} . \quad=1 / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{86400} \frac{1}{\sec }=\tan ^{\mathrm{sec}} 1 / \mathrm{sec} \\
& \dot{=} \dot{=} \dot{2} \mathrm{E}^{1 / \mathrm{sec}} \\
& =-86400 \frac{1 / \text { day }}{\sec }= \pm 2 \mathrm{E}^{1 / \mathrm{sec}} \\
& \pm \div \pm \div 1 / \mathrm{sec} \\
& =\frac{1 / \mathrm{day}}{86400} \frac{\sec }{2}=2 \leq 1 / \mathrm{sec}
\end{aligned}
$$

Water Demand $1 /$ day (incl.Growthfac.) Distribution Ratio (Parts)

Pipe \emptyset for Distribution (Chamber)
Inlet Qmin $1 /$ sec (Dry Season)
Inlet Qmax $1 / \mathrm{sec}$ (Ref. Designflow)

Tank 1	Tank 2	Tank 3	Tank 4

STORAGE TANK CALCULATTON (For additional tanks use backside)

TANK NO: 1	INLET $1 / \mathrm{sec}$		DEMAND		DIFFERENCE	WATER LEVEL
PERIOD	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3	30 \cdot
8.30-11.30am	3		10
11.30-1.30pm	2		15	.		
$1.30-4.00 \mathrm{pm}$	2.5		10		
4.00-7.00pm	3		30	-		
$7.00-5.30 \mathrm{am}$	10.5		5		\cdots	
Daily yield				Daily dem	Overflow -
Storage Capacity (min.)........L $=\ldots \ldots . .$. M3 Tank size chosen $=\ldots$. M3						
Tank is filled withinhrs. (must be less than 10 hrs)						

[^0]Prepared by \qquad
Date \qquad
Tech. Advisor:
Signature

TANK NO: 2.	INLET.... $1 / \mathrm{sec}$		DEMAND		DIFFERENCE	WATER LEVEL
PERIOD	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3	30 \cdot.....	. \cdot........
8.30-11.30am	3		10	
11.30-1.30pm	2		15			
1.30-4.00pm	2.5		10	. \cdot.......	
4.00-7.00pm	3		30		
7.00-5.30am	10.5		5			
Daily yield $=$.........				- Daily dem	Overflow
Storage Capacity (min.)........L $=$.........M3 Tank size chosen $=\ldots .$.						

TANK NO: 3	INLET. . . $1 / \mathrm{sec}$		DEMAND		DIFFERENCE	WATER LEVEL
PERIOD	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3	-•.....	30		
8.30-11.30am	3		10	..	.	
11.30-1.30pm	2		15			
1.30-4.00pm	2.5		10		
4.00-7.00pm	3		30			
7.00-5.30am	10.5		5			
Daily yield -						
Storage Capaci	(min.)	Tank size	osen =. . . . M3

TANK NO: 4	INLET. . . $1 / \mathrm{sec}$		DEMAND		DIFFERENCE	WATER LEVEL
PERIOD	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3		30	
8.30-11.30am	3		10	-..........	
11.30-1.30pm	2		15			
1.30-4.00pm	2.5		10		
4.00-7.00pm	3		30			
7.00-5.30am	10.5		5		
$\text { Daily : } \quad \text { yield }=\text {.......... }$						
Storage Capacity (min.).........L $=$.........M3 Tank size chosen =....M3						

Tank 2 is filled within.. (must be less than 10 hrs)
Tank 3 is filled within.. (must be less than 10 hrs)
Tank 4 is filled within... (must be less than 10 hrs)

LESSON NO 1 : Chapter 1 : Intake of Spring
Chapter 2 : Dimensioning of Sedimentation Chamber

Chapter 1: Intake of Spring
Refer to: HBG page -99-11.1. Introduction
11.2. Site Locations

MST page -9- 2.2. Spring Measurements
2.3. Quality Test of Springs
3.2. Spring Catchments

Example 1.1.
Qmax $=1.51 / \mathrm{sec}$ (Spring flow during rainy season)
Qmin = $0.85 \mathrm{l} / \mathrm{sec}$ (Spring flow during dry season)
$\mathrm{L}=25 \mathrm{~m}$ (Distance from spring to siltbox)
$H \quad=0.7 \mathrm{~m}$ (Head; hight between outlet spring and inlet siltbox)
$\emptyset=50 \mathrm{~mm}$ (Outlet pipe springcatchment to silthox)
Qreq $=1.01 / \mathrm{sec}$ (Required design flow)

Question:
Is the selected pipe of 50 mm sufficient?
Do we need an overflow pipe at the catchment?

First Reach:

$$
\text { Headloss: } \frac{0.7 \mathrm{~m}}{25 \mathrm{~m}} \times 100=\underline{\underline{2.8 m} / 100 \mathrm{~m}} \text { or } \underline{\underline{2.8 \%}}
$$

Second Reach:

Refer to table "Friction Losses in PVC Pipes" (Form C)
Accordingly to this table Qmax $=1.551 / \mathrm{sec}$

Conclusion:
The minimum pipe \emptyset should never be smaller than 50 mon.
Selected pipe \emptyset of 50 mm is sufficient because Omax $=1.55 \mathrm{l} / \mathrm{sec}$ compared to Qreq $=1.01 / \mathrm{sec}$.

One overflow pipe of $\emptyset 50 \mathrm{~mm}$ is needed.

Exercise 1

Design the Intake and Overflowpipe according to the following informations: Spring flow during rainy season $=21 /$ sec. Spring flow during dry season $=$ $1 \mathrm{l} / \mathrm{sec}$. Distance spring to siltbox $=20 \mathrm{~m} ; \mathrm{H}=0.4 \mathrm{~m}$

Designflow $=1.4 \mathrm{l} / \mathrm{sec}$. (Refer to example 1.1.)

Use this space for calculation etc.

EXERCISE 1 (Solution)
Headlose: $-\frac{0}{20} 4 \mathrm{~m}-100=2 \mathrm{~m} 10 \mathrm{~m}_{\mathrm{m}}$ or 20
Qmax: $\quad \emptyset 50 \mathrm{man}=1.31 / \mathrm{sec}<$ Qreq
ด $63 \mathrm{nan}=2.31 / \mathrm{sec}>$ Oreq
Conclution: For Intake $1 \times 63 \mathrm{~mm}$ or $2 \times \forall 50$ man
For overflow springeatchment min. 1×4 shum
or better 1×6 ㅇman

Chapter 2 : Dimensioning of Sedimentation Chamber (Siltbox)
Refer to : HBG page -102-104-11.6. Sedimentation
11.7. Service Pipes
-114-115-12.1. Introduction
12.2. Settling Velocities
12.3. Detention Time

MST page -9- 3.3. Siltbox

Example 2.1.
Spring Flow: (In1et)
$Q_{\max }=0.451 / \mathrm{sec}$ or $271 / \mathrm{min}$
Qmin $=0.251 / \mathrm{sec}$ or $15 \mathrm{l} / \mathrm{min}$
Design Flow (Out1et)
Qreq. $=0.301 / \mathrm{sec}$

Question:

What is the required volume of the siltbox to allow a minimum retention time of 20 minutes? Selected pipe \emptyset for the outlet is $\emptyset 25 \mathrm{~mm}$ with a maximum possible flow of $0.4 \mathrm{l} / \mathrm{sec}$. (During rainy season only).

First Reach:

Qmax from spring during rainy season (Intake)
$=0.451 / \mathrm{sec} \times 60=271 / \mathrm{min} \times 20=540 \mathrm{I} / 20 \mathrm{minutes}$

Second Reach:

Qmax for outlet pipe $\emptyset 25 \mathrm{~mm}$
$=0.401 / \mathrm{sec} \times 60=241 / \mathrm{min} \times 20=4801 / 20$ minutes

Third Reach:
Overflow at siltbox (during rainy season only)
$=540 \mathrm{l}-4801=60 \mathrm{l} / 20 \mathrm{minutes}$ or $3 \mathrm{l} / \mathrm{min}$

Conclution:

Siltbox with volume of min 4801 is needed.
Take standard plan of Siltbox $V=5001$

Exercise 2

What is the required volume of the Siltbox?
The following informations are given:
Retention time $=20$ minutes
Spring flow Qmax $=0.21 \mathrm{l} / \mathrm{sec}$
$O_{\text {min }}=0.161 / \mathrm{sec}$
Design flow Qreq $=0.20 \mathrm{l} / \mathrm{sec}$
Outlet siltbox $=P V C \emptyset 25 m m ;$ Qmax $=0.31 / \mathrm{sec}$

Use this space for calculation etc.

EXERCISE 2 (Solution)
Spring flow Qmax $=0.211 / \mathrm{sec} \times 60 \times 20=2521 / 20 \mathrm{~min}$ nutes
Minimum volume of siltbox $=2521 /$ take standardpilan $V=300$

Exercise 3

What is the required volume of the Siltbox, and what is the expected overflow during rainy season at the Siltbox ?
The following informations are given:
Retention time $=20$ minutes
Spring flow Qmax $=1.60 \mathrm{l} / \mathrm{sec}$
Qmin $=1.001 / \mathrm{sec}$
Design flow Qreq $=0.801 / \mathrm{sec}$
$Q_{\max }=1.001 / \mathrm{sec}$

Use this space for calculation etc.

EXERCISE 3 (Solution)
Spring flow (rainy season) (max $=1.6 \mathrm{l} / \mathrm{sec} \times 60 \times 20=19201 / 20 \mathrm{minutes}$
Designflow (outletpipe) Omax $=1.01 / \mathrm{sec} \times 60 \times 20=12001 / 2$ minutes
Overflow at siltbox (during miny season only) $\quad=7 ? 0$, 1 oninutes
Minimum volune of siltbox $=1200 \mathrm{~L} / \mathrm{ev}$. better 1500 L

LESSON NO 2 : Chapter 3 : Design Period, Population, Water Demand Chapter 4 : Design Flow of Mainline Siltbox - Storagetank

Chapter 3: Design Period, Population, Water Demand
Refer to: HBG page -27-29-4.1. Introduction
4.2. Design Period
4.3. Population Forecast
4.4. Water Demand

MST page -9- 3.1. Water Consumption

```
Examp1e 3.1.
Calculate the Water Demand for a village with the following information:
Population = 450 people
School = 200 day-students
Daily Consum. = 451 per person (Possible due to good spring available)
Spring Flow = 25 1/min during dry season
```

Note: For the increase of population and consumption which is about 35% increase over a period of 20 years, as well leakage and wastage of water which is about 10%, it is advisable to take a GROWTHFACTOR of 1.1 - 1.5 to consider the future water demand.

First Reach:
Daily Water Demand
$450 \times 451 /$ day/consumer....................... $=20250$
200×10 1/day/student. $=2000$
22250 1/day
Second Reach:
Design of future Water Demand
Growthfactor $1.5 \times 22250 . \ldots . .$. $=333751 /$ day

Third Reach:
Water Balance (during dry season)
Spring yield, $25 \mathrm{l} / \mathrm{min}$.
Estimated consumption incl. future consum. $=333751 /$ day
Estimated nverflow............................. $=26251 /$ day

Exercise 4

Calculate the Water Demand as well Water Balance during dry and rajny season for a village with the following informations:

Population $=$	150 people
Spring Flow $=$	$0.121 / \mathrm{sec}$ during rainy season
	$0.06 \mathrm{l} / \mathrm{sec}$ during dry season
Growthfactor $=$	1.3 (This factor of 1.3 includes in this example the increase
	of consumption only, assuming there is no increase of
	population.

Use this space for calculation etc.

EXERCISE 4 (Solution)

Daily water demand incl. future demand:
$150 \times 451 /$ day $=6750 \mathrm{l} /$ day $\times 1.3$ growthfactor $=87751 / \operatorname{day}$
Water balance: (rainy season)
Spring yield: $0.121 / \mathrm{sec} \times 86400 \mathrm{sec} . \quad=10368 \mathrm{l} / \mathrm{d} \mathrm{y}$
Consumption incl. future demand
$=37751 / 414 y$
Estimated overflow
$=1593.144$
Water balance: (rly season)
Spring yield: $0.061 / \mathrm{sec} \times 86400 \mathrm{sec} \quad=5184 \mathrm{l} / \mathrm{sec}$
Consumption incl. future demand $\quad=87751 / 1 \mathrm{lay}$
Estimated shortage

$$
=-3591 \quad 1 / d a y
$$

Conclution: During rainy season sufficient water available, see overflow. During dry season in future shortage of 3591 1/day possible.
Therefore: Rainy season 45 1/day/person / dry seson about 35 //day/person or less, if the pomlation increase.

Chapter 4 : Desisin Mow of Mainline Sillbox - Storagetank

The Design Flow is calculated by dividing the total consumption per day (Water Demand inc1. ey. Growthfactor) by 86400 seconds.

$$
\text { DESIGN FLOW Qreq }(1 / \mathrm{sec})=\frac{\text { Water Demand per Day }(1)}{86400(\text { seconds })}
$$

Example 4.1.

We want to know the Design Flow based on the informations given in example 3.1. As there is a sufficient spring yield available as well an estimated overflow during dry season, we can take the estimated Future Water Demand inc1. Growthfactor for the calculation of the Design Flow.

$$
\text { Design Flow Qreq }=\frac{333751}{86400 \mathrm{sec}}=0.3861 / \mathrm{sec}
$$

Question:

What is the required pipe for the mainline siltbox to storagetank assuming the following informations are given:
$\mathrm{L} \quad=400 \mathrm{~m}$ (Distance siltbox - storagetank)
$H=40 \mathrm{~m}$ (Head; hight between siltbox - storagetank)
Qreq $=0.3861 / \mathrm{sec}$

First Reach:

$$
\text { Headloss: } \frac{40 \mathrm{~m}}{400 \mathrm{~m}} \times 100=10 \mathrm{~m} / 100 \mathrm{~m} \text { or } 10 \%
$$

Second Reach:

```
Refer to Lable "Friction Losses in PVC Pipes" (Form C)
Accordingly to this table:
Headloss (Frictionloss) 10%, PVC \emptyset 20mm Qmax = 0.29 1/sec (to small \emptyset)
    10%, PVC \emptyset 25mm Qmax =0.49 1/sec (suitable \emptyset)
```

Conclusion:
To guarantee the required Design Flow of Qreq $=0.3861 / \mathrm{sec}$, we have to select PVC pipe $\emptyset 25 \mathrm{~mm}$ with approximately Max $=0.491 / \mathrm{sec}$.

Exercise 5

Calculate the Design Flow and required pipe \emptyset for the pipeline siltbox to storagetank. What is the maximum flow (Qmax) of the selected pipe?

The following informations are given:

| Daily Water Demand | $=22000 \mathrm{l} /$ day (incl. future demand) | |
| ---: | :--- | ---: | :--- |
| Siltbox | H | $=135 \mathrm{~m}$ |
| Storagetank | H | $=100 \mathrm{~m}$ |
| Distance Siltb. - Tank | $=700 \mathrm{~m}$ | |

EXERCISE 5 (Solution)

```
Designflow : \(\frac{22000-1}{86400-\sec }=0.251 / \sec\)
```



```
Proposed pipe \(\emptyset: \emptyset 20 \mathrm{~mm}\) Qmax \(=0.19 \mathrm{I} / \mathrm{sec} \rightarrow\) not sufficient.
    \(\emptyset 25\) manax \(=0.331\) Sec \(\rightarrow 0 . K\).
```


Exercise 6

The following information is given:
Village population $=300$ people

Calculate: Water Demand, Water Balance dry season and rainy season, Design Flow (Qreq), Pipe Siltbox to Storagetank, Design Flow (Qmax) and req̧uired Volume of Siltbox.

EXERCISE 6 (Solution)

Daily water demand incl. future demand:
$300 \times 451 /$ day $=135001 /$ day $\times 1.4$ growthfactor $=189001 /$ day
Water balanc: (rainy season)
Spring yield: $0.221 / \sec \times 60 \times 60 \times 24 \quad=19008 \mathrm{l} /$ day
Water demand incl. future demand
$=18000 \mathrm{l} / \mathrm{day}$
Estimated overflow
$=1081 / \mathrm{d} 2$
Water balance: (dry season)
Spring yield: $0.171 / \mathrm{sec} \times 60 \times 60 \times 24=14688 \mathrm{l} / \mathrm{day}$
Water demand
$=189001 /$ day
Shortage in future (after 20 years) $=-42121 / d a y$
Designflow: $\frac{18900-\frac{L}{6}}{6400}=0.21814 \mathrm{sec}$
Headloss : $-\frac{21 \mathrm{~m}}{300 \mathrm{~m}} \times 100=7 \mathrm{~m} \leq 100 \mathrm{~m}=\mathrm{or}$. 7%

Siltbox: $0.22 \mathrm{l} / \mathrm{sec} \times 60 \times 20=264 \mathrm{l} / 20 \mathrm{minutes} \quad$ take Plan $\mathrm{V}=300 \mathrm{I}$

LESSON NO 3 : Chapter 5 : Capacity Design of Storage Tanks

Chapter 6 : Distribution Ratio

Chapter 5: Capacity Design of Storage Tanks
Refer to: HBG page -124-126-14.1. Introduction

14.2. Necessity for a Reservoir
14.3. Capacity

MST page -11- 3.4. Storage Tank

Consumptionpattern

The consumptionpattern shown in the HBG page -126- are based upon direct observation of typical villages in Nepal. Although no actual fieldstudies have been done in Sri Lanka to determine the pattern of consumption during the day. SRTS for the purpose of design assumes, that the consumptionpattern over the day will roughly be like indicated below:

SRTS Consumptionpattern

Example 5.1.

The project population of a village is 350 people.
Safe yield of the source is $0.25 \mathrm{l} / \mathrm{sec}$. (during dry season)
The total daily water demand including growthfactor is 20000 1/day.
Calculate the required storage capacity, by using the assumed SRTS consumptionpattern.

PERTOD	INLET		DEMAND		DIFFERENCE	WATER LEVEL
	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3	. 2700.	30	. 6000.	- -3300	. -3300.
8.30-11.30am	3	. 2700.	10	. 2000.	+. . 700	- 2600
11.30-1.30pm	2	. 1800	15	. 3000	-1200	- 3800
$1.30-4.00 \mathrm{pm}$	2.5	2250	10	? 000	+ 250	- 3550
$4.00-7.00 \mathrm{pm}$	3	2700	30	. 6000	-3300	-6850)
$7.00-5.30 \mathrm{am}$	10.5	94.50	5	1000	+8450 +8.	+160014
Daily spring yield $=21.6001^{\prime}$			$20.000)^{2}=$ Daily demand Overflow -			
Storage Capacity (min.).6850. $=\ldots 6.85 . \mathrm{m3} \mathrm{Tank}$ size choseri $=.7 \mathrm{M3}$						

```
\()^{4}=\) Daily spring yield \((0.251 / \sec \times 60 \times 60 \times 24=21600 \mathrm{~L}\)
\()^{2}=\) Daily water demand incl. growthfactor (20000 L)
\()^{3}=\) The maximum shortfall during the day ( -6850 L )
\()^{4}=\) Overflow early morning ( 1600 L )
```

Conclusion: The required storage capacity is 6850 L . (The maximum shortfall during the day). This volume is rounded off to the next available standard-plan, lets say recommended volume is $7000 \mathrm{~L} / 7 \mathrm{~m} 3$
After calculating the required storage capacity always check whether the recommended tank(s) will be filled up during the night within 8 hours.
Check: Spring yield $0.251 / \mathrm{sec} \times 60 \times 60 \times 8 \mathrm{hrs}=7200 \mathrm{~L}$
Recommended volume of tank $\quad=7000 \mathrm{~L}=0 . \mathrm{K}$.

Exercise 7 (Solution)

Calculate the required storage capacity for the village descriped in example 3.1. (one tank only)

PERTOD	INLET $251 / \mathrm{mi}$		demand		nifference	water lfvel
	hrs:	liters:	\%:	liters:	+1-	liters:
5.30-8.30am	3	45900..	30	100 0 ?	-5.512.5	-.5.5.12:5
8.30-11.30am	3	4:500..	10	3.337.5.	+1.162.5	- 4.350
11.30-1.30pm	2	3.000.	15	500625	-2.006.?	-. 6.356 .25
$1.30-4.00 \mathrm{pm}$	2.5	. 3.750	10	3:337,5	t.. 41 ? 5	- 5.943 .15
4.00-7.00pm	3	4.500.	30	$10.01 ?$	$-5.512 .5$	-11. 4566.25
$7.00-5.30 \mathrm{am}$	10.5	15.750.	5	! ¢	11.41 .25	$+2.625$
Daily spring yield $=36000$.						overflow-
Storage Capacity (min.).19456. $=\ldots .14 .45 \mathrm{~m}$ rank size chosen $=12 \mathrm{~m}$						

Check: Spring flow $25 \mathrm{l} / \mathrm{min} . \times 60 \times 8 \mathrm{hrs}=12 \theta 01=$ Tank $\operatorname{sig} \mathrm{m} 1200 \mathrm{l}=0 . \mathrm{K}$.

Chapter 6 : Distribution Ratio

If a GWS scheme needs more than one storage tank, it is necessary to allocate the accurate number of consumers benefiting of each tank. Thereafter by knowing the daily water demand of beneficiaries for each tank, the Distribution Ratio can be calculated as shown in the following example.

Examp1e 6.1.

$$
\frac{\text { Tank } B}{h}=85.00 \mathrm{~m}
$$

Consumer:

150 people	$=101251 /$ day		
300 day-students	$=\frac{45001 / \text { day }}{}$	Consumer:	
Total	$=146251 /$ day *	80 people	$=54001 /$ day
		Total	$=54001 /$ day $*$

* = Total Daily Water Demand incl. Growthfactor.

Distribution Ratio:

$$
\begin{aligned}
& \text { Tank } A=\frac{146251 / \text { day }}{54001 / \text { day }}=\frac{2.7}{1}=3 \\
& \text { Tank } B=\frac{3}{1}
\end{aligned}
$$

Conclusion:

As there is sufficient water available we can use instead 2.7 : 1 the ratio 3 : 1 which makes it possible to use standardplan $\mathrm{C}-04$.

Recommended distribution for $3: 1$ according plan C-04is:

To
Tank A

70
Tanh B

Exercise 8
What is the required pipe \emptyset; Qreq and Omax for Scrtion A (spring - tank $\mathrm{L}=375 \mathrm{~m}$) and Section B (spring - tank $\mathrm{L}=180 \mathrm{~m}$).
Refer to example 6.1.

EXERCISE 8 (Solution)

Section $B:\left(\right.$ safe yield) $=\frac{0.35}{4} 1 / \mathrm{sec}=0.0875 \mathrm{l} / \mathrm{sec}$ (Designflow $=0.0625 \mathrm{l} / \mathrm{sec}$)
Section A : (safe yield) $=\frac{0.35}{} \frac{1}{4} / \sec ^{x} 3=0.26251 / \sec ($ Designflow $=0.16921 / \mathrm{sec})$
Section A : Designflow $=-\frac{14625}{86400} \frac{1}{2} \sec =0.1692 .1 /$ ser
Section B : Designflow $=-\frac{5400}{86400} \frac{1 / \sec -}{\sec }=0,0625=1 / \mathrm{sec}$
Required pipe \emptyset for section A :

Required pipe \emptyset for section B:

Exercise 9

Calculate the Distribution - Ratio as well the required pipe \emptyset; Qreq and Qmax for each section. (A, B and C).

)* Daily Water Demand inc]. Growthfactor.
(Use back-side of thiss page for calculation etc.)

EXERCISE 9 (Solution)

Distribution system:	TANK 1	TANK 2	TANK 3
Water demand 1/day :	$12800 \mathrm{l} /$ day	20000 1/day	$27000 \mathrm{l} / \mathrm{day}$
Distribution ratio:	$\frac{12800}{12800}=1$	$\frac{20000}{12800}=1.56$	$\frac{27000}{12800}=2.1$
Pipe \emptyset for distribution:	$\begin{aligned} & 1 \text { Part } \\ & =\emptyset 20 \mathrm{mn} \end{aligned}$	$\begin{aligned} & 11 / 2 \text { Parts } \\ & =\emptyset 32 \mathrm{~mm} \end{aligned}$	2 Parts $=\emptyset 40 \mathrm{mun}$
Inlet Qmin (1/sec) :	0.1555	0.2333	0.3111
Section A:		(0.7 1/sec	yield)

Headloss: $-\frac{150 \mathrm{~m}}{600 \mathrm{~m}} \times 100=\underline{25 \%}$
Selected pipe $\emptyset: 25 \mathrm{~mm}$ Omax $=0.8,1 \operatorname{Lsec} \quad$ Qreq $=0.71 / \mathrm{sec} \rightarrow 4.5$ parts
Section B:
Headloss: $-\frac{20 \mathrm{~m}}{280 \mathrm{~m}} \times 100=\underline{\underline{7}}=\underline{\underline{10}} \underline{\underline{6}}$
Selected pipe $\emptyset: 25 m m$ (max $=0.4 \mathrm{l} / \mathrm{sec}$ (not sufficient) Qreq $=0.5444 \mathrm{l} / \mathrm{sec}$ $(0.3111+0.2333)$
$32 \operatorname{mon}$ Qmax $=0,81 \mathrm{sec} 0 . K$.
$\underline{2 \text { Parts }+1.5 \text { Parts }}$
better combination of pipe sizes:
assumed Qmax $=0.61 / \mathrm{sec}$
$\frac{100 \times 15-(4.5 \% \times 280 \mathrm{~m})}{14.5 \%-4.5 \%}=24 \mathrm{~m} \emptyset 25 \mathrm{~mm} \quad$ Qmax $=0.61 / \mathrm{sec} \quad$ (Head 5in)
Section C:
Headloss: $-\frac{35 \mathrm{~m}}{450 \mathrm{~m}} \times 100=\underline{\underline{7}} \mathbf{= 7 7 \%}$
Selected pipe $\emptyset: 2$ 2mmax $=0.421 / \mathrm{iec} \quad$ Qreq $=0.3111 \mathrm{l} / \mathrm{sec} \rightarrow 2$ Parts

```
EXERCISE 9 (Ratio for Distribution Chamber)
(Solution) Sketch in addition to solution of exercise 9
```


GRAVITY WATER SIPPLY DFSIGN \& HYDRAILIC CORRESPONDENCE COURSE

LESSON NO 4 : Chapter 7 : Topographic Surveying

Chapter 8 : Flow Rate, Pipeline Design

Chapter 7: Topographic Surveying

Refer to: HBG page -16-26- 3.1. Introduction
3.3. Barometric Altimeter
3.4. Abney Level (Clinometer)
3.8. Surveying with the Abney (Clinometer)

As it commonly happens within SRTS the topographic survey is divided up in two separate surveys. One for the so called "Situation - Survey." and the other one for the "Hydraulic - Survey". The situation survey indicates all the jmportant marks as roads, rivers, houses etc. The hydraulic survey indicates the alignment of the pipeline from the source to the storage tank and the distribution to the standposts. These two surveys are needed to draw the final situation plan, normaly to scale 1:5000. Beside using the standard form H for surveying, it is advisable to maintain at the same time a freehandsketch of the plan, to mark all survey points or other important fix-points.

Example 7.1.
Sketch of Hydraulic Survey (By using a copy of the previous made situation plan, scale 1:5000).

Chapter 8 : Flow Rate \& Pipeline Design

Refer to: HBG page -58-73- For introduction and general information. MST page -11- 3.5. Distribution System
3.6. Piping

Flow Rate

The required flow rate depends on the number of consumer at each tap. The minimum flow rate for one tap is $0.10 \mathrm{l} / \mathrm{sec}$. ($0.05 \mathrm{l} / \mathrm{sec}$.). If many consumer are expected at the same tap, the flow rate has to be increased to $0.2 \mathrm{l} / \mathrm{sec}$.

In general use the following recommended flow rates:

For every extra tap add $0.051 / \mathrm{sec}$

Example 8.1.

Sketch of Flow Rate Design (Refer as well to example 7.1.)

Pipeline Design
Refer to: MST page -13- 3.7. Hydraulic Calculation

To work out the most suitable dimension of a pipeline section, it is advisable to use standard Form G as a worksheet first. Later on the final design is transfered to Form D, the Hydraulic Profile. The hydraulic profile creates a visual, easy to understand picture of the topographic elevation along the pipeline. It is not a worksheet, but the presentation with lots of information of the final pipeline design. Therefore it should be carefully laid out and kept clean. (Not too many eraser traces.)

Note: Form G does not replace Form D. The Hydraulic Profile remain: always necessary for all Gravity Water Supplies.

Example 8.1.
Explains how to work out the most suitable pipeline design for section 2 by using stanard Form G (Hydraulic Calculation Variants).
Refer also to sketch of example 8.1.

Distance:

Tank - Tap $6=220 \mathrm{~m}$
Tap 6-Pt. $10=50 \mathrm{~m}$
Pt. 10- Tap $7=80 \mathrm{~m}$
Tank-Pt. $6=100 \mathrm{~m}$
Key Plan of
Section 2

Hydraulic Calculations - Variants

Point NO	Distance 1 m	Static head m	Pipe $g \mathrm{~mm}$	Tap NO	Flow rate 1/s	Friction loss rate $1 \mathrm{~m} / 100 \mathrm{~m}$	Friction loss m	Friction chainage	Oynamic pressure head	Remarks
$\text { Tann } 1 / 16$	220	25	25	2	0.3	4.25	9.35	9.35	15.65	O.K.
76/17	130	20	20	1	0.2	5.25	6.82	16.17	3.83	not sufficiant! min. See
Second	d Ass	mpti	:							
$\frac{\operatorname{Tan}^{2} h}{T 6}$	270	25	25	2	0.3	4.25	7.35	935	15.65	O.K
T6/17	130	20	25	1	0.2	2.0	2.60	11.45	8.05	O.K.

Exercise 10

Pipeline Design of Section 3. (Refer also to sketch of example 8.1.)

Distance:

Tank - Pt. $5=185 \mathrm{~m}$
Pt. 5 - Tap $1=70 \mathrm{~m}$

Exercise 11

Pipeline Design of Section 1. (Refer also to sketch of example 8.1.)

Question to Exercise 10 and 11
Work out the most suitable pipeline design for section 1 and 3. Use enclosed Hydraulic Calculations - Variants Form G.
In addition to Exercise 10 make use of the Formula "Combination Pipe Sizes" as descriped in the HBG on page -71-72- to guarantee a Residual Head or Dynamic Pressure Head of 5 m at Tap 1. ($\mathrm{H}=15.00-5.00=10.00 \mathrm{~m}$)

We will finalize the Hydranlic Profile for the sections 1-3 during the Intermediate Seminar. Please send your Calrilations - Variants in advancn.

$\begin{gathered} \hline \text { Point } \\ \text { No } \end{gathered}$	$\left\|\begin{array}{c} \text { Distance } \\ 1 \mathrm{~m} \end{array}\right\|$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Static } \\ \text { heade } \\ \mathrm{m} \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Ripe } \\ \mathrm{gmm} \end{array}$	$\begin{array}{\|c} \hline \text { Tap } \\ \text { No } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { flow } \\ \text { rofe } \\ 1 / s \end{array}$	$\left\lvert\, \begin{aligned} & \text { Friction } \\ & \text { loss rate } \end{aligned}\right.$	$\begin{gathered} \text { Friction } \\ \text { loss } \\ \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { Friction } \\ & \text { chainage } \end{aligned}$	$\begin{gathered} \text { Oynamic } \\ \text { Panessure } \\ \text { nead } \end{gathered}$	Remarks
	Exetcise io		(Section 3) So		1 1ution					
Tmk/ Tl	255	15	20	1	0.2	5.25		13.38	1.62	not sufficiont
Trank	255	15	(25)	1	0.2	2.05	4.61	4.61	10.39	O.K.
	Exe	cise 11	Secti	1) S	ution					
Toanh/ $/ 2$	200	15	(32)	4	0.35	1.75	3.5	3.5	11.5	O.K.
${ }^{7}$	130	25	(25)	3	0.3	4.25	5.52	9.02	15.18	o.k.
${ }^{73} / 4$	200	35	25	2	0.2	2.0	4.00	13.02	21.98	
T4/5	70	30	20	1	0.1	1.5	1.05	14.07	15.93	
T3/74	200	35	(20)	2	0.2	5.25	10.50	19.52	15.48	0.4
${ }^{14} / 15$	70	30	(20)	1	0.1	1.5	1.05	20.57	9.43	OK.
Tank/12	200	15	25	4	0.35	5.5	11.00	11.00	4.00	not sutficient

Task in addition to Exercise 10 (Solution)
Used formula "Combination Pipe Sizes" as descriped in HBG page -71-72-
$H=$ desired headloss, $15 m-5 m=10 m$
$\mathrm{L}=$ total pipelength, 255 m
$X=$ small size pipelength, ? (m)
F1 $=$ frictionl. factor large pipe, $\emptyset 25 \mathrm{~mm}=2 \%$
Fs $=$ frictionl. factor small pipe, $\emptyset 20 \mathrm{~mm}=5.3 \%$
$X=\frac{100 \mathrm{H}-(\mathrm{Fl} \times \mathrm{L})}{\mathrm{Fs}-\mathrm{Fl}}=\frac{100 \times 10-(2 \times 255)}{5.3-2}=\frac{490}{3.3}=148 \mathrm{~m} \emptyset 20 \mathrm{~mm}$

Conclution:
107m pipe $\emptyset 25 \mathrm{~mm}$
148 m pipe $\emptyset 20 \mathrm{~mm}$

LESSON NO 5 : Exercise 12 : Combination of pipe sizes
Diagrammatical and arithmetical method
Exercise 13 : Pipeline Design and Hydraulic Profile

Exercise 12

Calculate the length and diameter of the smaller-aized pipe and larger-sized pipe to guarantee a desired natural maximum flow of $0.81 / \mathrm{sec}$.

For diagrammatical method use Vertical Scale 1:1000/Horizontal Scale 1:5000. For arithmetical method use Formula HBG page -72- / -203-

Use this space for calculation (arithmetical method)

Exercise 12 (Solution)

1. Reach: Maximum head loss $\frac{200 \mathrm{~m}-60 \mathrm{~m}}{1200 \mathrm{~m}} \times 100=11.66 \%$
2. Reach: Refer to friction loss table.

By frictionloss $11.66 \% \ldots \emptyset 25 \mathrm{~mm}=0.521 / \mathrm{sec} .($ (Omax)
$\ldots \emptyset 32 \mathrm{~mm}=1.00 \mathrm{l} / \mathrm{sec} .(\mathrm{max})$
3. Reach: Combination of pipe size $\emptyset 25 \mathrm{~mm} \& \emptyset 32 \mathrm{~mm}$ possible. Refer to formula page - $31-$ or HBG page - 72 -
$\mathrm{L}=1200 \mathrm{~m}$
$\mathrm{X}=$?
$\mathrm{Fs}=\emptyset 25 \mathrm{~mm} ; 24 \%$
$\mathrm{Fl}=\emptyset 32 \mathrm{~mm} ; 7.5 \%$
$X=\frac{100 \times 140-(7.5 \times 1200)}{24-7.5}=\frac{5000}{16.5}=303 \mathrm{~m}$
$H=140 \mathrm{~m}$

Conclution:
303 m pipe 025 mm
897m pipr 32 mm

Exercise 13

Work out the most suitable pipeline design by using Hydraulic Calculation Variants, Form G, based on the following survey data.

In addition prepare the Hydraulic Profile by using Vertical Scale 1:500 and Horizontal. Scale 1:5000.

HYDRAULIC CALCULATIONS - VARIANTS FORM G

GRAVITY WATER SUPPLY DESIGN \& HYDRAULIC CORRESPONDENCE COURSE

LESSON NO 6 : Exercise 14 : Technical Information, Standard-form INa \& Tb Exercise 15 : Flow-rates

Exercise 14 / a

Calculate all technical information required for the GWS scheme represented with enclosed Situation Plan, by using new introduced Standard-form $T / a \& I / b$. For the flowdiagram use the space provided on form I / b.

Exercise $15 / \mathrm{a}$
Calculate and indicate in the table provided minimum Flow-rates required for each pipe-section.

Pipeline-section:	Flow-rate:
Tap 1 - Tap 3	0.1
Tap 2 - Tap 3	0.1
Tap 3 - Tap 4	0.3
Tap 4 - Point 2	0.4
Tap 5 - Point 2	0.2
Point 2 - Point 1	0.6
Tap 6 - Point 1	0.1
Point 1 - Tank	0.7
Tap 7 - Tank	0.2
T10 - Pt.4	0.1
T11 - Pt.4	0.2
Pt.4 - Pt.3	0.3
T9 - Pt.3	0.1
Pt.3 - T8	0.4
T8 - TanK	0.5

[1

a.

Situation Plan (not to scale) to Exercise 14/a

Source: Dry Season:

Spring $10.1 \mathrm{i} / \mathrm{sec}$.
Wet Season:

Spring $20.151 / s e c$.
$0.25 \mathrm{l} / \mathrm{sec}$.
aroso it

Name of Project
Exercise 14/a

WATER DEMAND

.3.3.5. $\times 45 \mathrm{l} / \mathrm{day} /$ consumer $=. .15 .0 .75$.
$\ldots \ldots .{ }^{\times 10} 1 /$ day/student $=\ldots \ldots . .$.
Health clinic.................3000
Total excl. Growthfactor
$=18.075 \times 3.3$ Growthfactor $=23.497 .51 /$ day

WATER BALANCE DRY SEASON

Total yield $0: 25.1 / \mathrm{sec} \times 60 \times 60 \times 24 \mathrm{hrs}=.21600$.
Water demand incl. Growthfactor $\quad=23.497 .5$
Estimated $\quad=-189751 /$ shortage

WATER BALANCE WET SEASON

Total yield $0: 40.1 / \mathrm{sec} \times 60 \times 60 \times 24 \mathrm{hrs}=34.560$.
Water demand incl. Growthfactor
Estimated overflow /

DESIGN FLOWS

Mainline Siltbox - St. Tank 1

Mainline Siltbox - St. Tank 2
Mainline Siltbox - Distr. Chamber
Distr Chamber - Tank I.
Distr: Chamber -Tank II:

$$
\begin{aligned}
& 0.37 .1 \mathrm{sec}(820 \mathrm{~mm}) \\
& \text { - } 0.601 / \mathrm{sec}(\$ 20 \mathrm{~mm}) \\
& 0.22 .1 / \mathrm{suc}(\mathrm{~s} 2 \mathrm{~mm})
\end{aligned}
$$

DISTRIBUTION SYSTEM
Water Demand $1 /$ day (incl.Growthfac.)
Distribution Ratio (Parts)
Pipe \emptyset for Distribution (Chamber)
Inlet Qmin $1 / \mathrm{sec}$ (Dry Season)
Inlet (max $1 / \mathrm{sec}$ (Ref. Designflow)

Tank 1	Tank 2	Tank 3	Tank 4
11700	11.797 .5		
1	1		
25 mm	25 mm	\rightarrow (4fter req. To 20mm)	
0.125	0.125		
~ 0.60	0.22		

STORAGE TANK CALCULATJON (For additional tanks use backside)

TANK NO: $1+2$	INLET $0.1!\$_{1} / \mathrm{sec}$		DEMAND		DIFFERENCE	WATER LEVEL
PERIOD	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3	. 13 Ş.	30	. 3 ! 19	-2760.	-2160
8.30-11.30	3	. 13.50	10	1170	4. 180	-1980
	2	900	15	1755	- 855	-2835
	2.5	1125	10	1170	- 45	288
1.30-4.00pm	2.5	1350	10	- 3510		
$4.00-7.00 \mathrm{pm}$	3		30	. 3510	-2160	-5040
$7.00-5.30 \mathrm{am}$	10.5	4725	5	585	± 4140	90
Daily yield $=10.800$			11.700. $=$ Daily demand			Overflow
Storage Capacity (min.), 50.40.L $=.50 .4 . \mathrm{M3}$ Tank size chosen $=.5 \mathrm{M} 3$						
Tank is filled within!!.....hrs. (must be less than 10 hrs)						

LESSON NO 6 : Exercise 14 : Technical Information, Standard-form I/a \& I/b Exercise 15 : Flow-rates

Exercise 14 / b

Calculate all technical informations required for the GWS scheme represented with enclosed Situation Plan, by using new introduced Standard-form $1 / a \& 1 / b$. For the flowdiagram use the space provided on form I/b.

Exercise 15/b

Calculate and indicate in the table provided minimum Flow-rates required for each pipe-section.

Pipeline-section:	Flow-rate:
Tap 1 - Tap 3	0.2
Tap 2 - Tap 3	0.1
Tap 3 - Tap 4	0.4
Tap 4 - Point 2	0.5
Tap 5 - Point 2	0.2
Point 2 - Point 1	0.7
Tap 6 - Point 1	0.1
Point 1 - Tank	0.8
Tap 7 - Tank	0.2
T12 - T II	0.1
T11 - Pt.3	0.2
T10 - Pt.3	0.1
PT.3 - T9	0.3
T9 - Tank	0.4
T8 - Tank	0.2

Name of Project :................................ Exerse $14 / b$

District Population	02?	Sources:	Dry Season:	Wet Season:
		Spring 1	$0.21 / \mathrm{sec}$	$0.31 / \mathrm{sec}$
		Spring 2	$0.11 / \mathrm{sec}$	0.15 $1 / \mathrm{sec}$
..........	Spring	1/sec	$1 / \mathrm{sec}$
			1/sec	$1 / \mathrm{sec}$
		Total Yield:	$0.31 / \mathrm{sec}$	$0.451 / \mathrm{sec}$

WATER DEMAND

$.32 p \ldots \times 451 /$ day $/$ consumer $=. .14 .400$.
......... ${ }^{\times 10 \text { 1/day/student } \quad ~}$
.Health - clinic................. 2.500
Total excl. Growthfactor $\quad=16.909 \times ?$ Growthfactor $=? 0^{\circ} 2801 /$ day

WATER BALANCE DRY SEASON
Total yield $.0 .3 .1 / \mathrm{sec} \times 60 \times 60 \times 24 \mathrm{hrs}=.25 .920$.
Water demand incl. Growthfactor
Estimated overflow / Shertor

WATER BALANCE WET SEASON

Total yield $0.451 / \mathrm{sec} \times 60 \times 60 \times 24 \mathrm{hrs}=38.880$
Water demand incl. Growthfactor
Estimated overflow /

SEDIMENTATION CHAMBER (Siltbox)

DESIGN FLOWS

Mainline Siltbox - St. Tank 1
Mainline Siltbox - St. Tank 2
Mainline Siltbox - Distr. Chamber

$$
\begin{aligned}
& =\frac{81001 / \mathrm{day}}{86400 \mathrm{sec} .}=\begin{array}{l}
(\text { Oreq }) \\
0.09 \\
=0.1 / \mathrm{sec}
\end{array} \\
& =\frac{12.7801 / \mathrm{day}}{86400 \mathrm{sec}}=0.14 .1 / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{86400} \frac{1}{\operatorname{dec}} \mathrm{sec}={ }_{21}^{2}=1 / \mathrm{sec}
\end{aligned}
$$

(Qmax) $\quad 019=220$
$0.191 / \sec 036=025$ $0.19,1 / \sec 0.36=\$ 20$
0.15 $0.241 / \mathrm{sec} \quad \$ 20$
 $\ldots 2.21 / \mathrm{sec}$:....1/sec

TECHNICAL INFORMATION (GWS only)
FORM I /b

DISTRTBUTION SYSTEM

Water Demand $1 /$ day (incl.Growthfac.)
Distribution Ratio (Parts)
Pipe \emptyset for Distribution (Chamber)
Inlet Qmin $1 / \mathrm{sec}$ (Dry Season)
Inlet Qmax $1 / \mathrm{sec}$ (Ref. Designflow)

Tank 1	Tank 2	Tank 3	Tank 4
8100	12.180		
2	3		
20 mm	32 mm	\rightarrow (ufter red.	acc. Hedr.cal
0.12	0.18		
0.19	0.24		

STORAGE TANK CALCILATION (For additional tanks use backside)

TANK NO: 1	INLET $0.12 .1 / \mathrm{sec}$		DEMAND		DIFFERENCE	WATER IEVEL
PERIOD	hrs:	liters:	\%:	liters:	+ / -	liters:
5.30-8.30am	3	. 1296	30	. 2430.	- 7.1134.	-..1134.
8.30-11.30am	3	. 1296	10	810	+. 486	$\cdots 648$
11.30-1.30p	2	864	15	1215	- -351	- 999
1.30	2.5	. 1080	10	- 810	+ 270	72
	3	. 1		24	+13	-1863
$4.00-7.00 \mathrm{pm}$ $7.00-5.30 \mathrm{am}$	10.5		30	\div	$+4131$	$+22687$
7.00-5.30am	10.5		5			$+2268$
Daily yield				$8 \% 00.0 n^{3 i l y}$ demand Overflow		
Storage Capacity (\min) . $1863 . . \mathrm{L}=.19 .9 . \mathrm{M} 3$ Tank size chosen $=$ 2 $2 . \mathrm{M} 3$						
Tank is filled withint.4.5.....hrs. (must be less than 10 hrs)						

FLOWDIAGRAM (Handsketch)

$-44 / a-$

Tank 2 is filled within 4.5

Tank 3 is filled within....................................... (must be less than 10 hrs)
; Tank 4 is filled within... (must be less than 10 hrs)

Hydraulic Correspondcnce Course FINAI. TEST Name:............................

1) The minimum pipe \emptyset used for the construction of spring catchments is: $\emptyset 32 \mathrm{~mm} \quad \emptyset 40 \mathrm{mma} \quad \emptyset 50 \mathrm{~mm} \quad \emptyset 63 \mathrm{~mm}$
2) The minimum gradient of the pipeline from the spring catchment to the siltbox is:
$\begin{array}{llllll}0.5 \% & 1.0 \% & 1.5 & 2 \% & 3 \% & 5 \%\end{array}$
3) The volume of the sillbox should allow a minimum retention time of: 30 minutes $\quad 20$ miniutes 15 minutes
4) The permitted maximum static pressure at a tap is:
$100 \mathrm{~m} \quad 80 \mathrm{~m} \quad 60 \mathrm{~m} \quad 50 \mathrm{~m} \quad 40 \mathrm{~m}$
5) The maximum static pressure in PVC pipes (pipelines) should not exeed: $100 \mathrm{~m} \quad 80 \mathrm{~m} \quad 60 \mathrm{~m} \quad 50 \mathrm{~m} \quad 40 \mathrm{~m}$
6) Taps are distributed in the village, that nobody has to walk more than: $50 \mathrm{~m} \quad 100 \mathrm{~m} \quad 150 \mathrm{~m} \quad 300 \mathrm{~m}$
7) After calculating the required storage tank capacity we check how many hours during the night are needed to fill the tank. After how many hours should the tank be filled:

6 hours 8 hours -10 hours 12 hours
8) Calculate design flow, required pipe \emptyset for the pipeline siltbox to storagetank. What is the maximum flow (Qmax) of the selected pine ?

Daily water demand $=30240$ 1/day
Siltbox H $\quad=160 \mathrm{~m}$
Tank II =: 10 m
Distance $\quad \mathrm{L}=950 \mathrm{~m}$
Use this space for the calculation:
Solution:
Design Flow: $\frac{30240}{86400}=0.351 / \mathrm{sec}$.
Head Loss: $\quad \frac{60}{950} \times 101=\underline{6.31 \%}$

Proposed pipe $\emptyset: 25 \mathrm{~mm}$; Qmax. $=0.36-\underline{0} .381 / \mathrm{sec}$.
combination of pipe sizes:
Sitioox $=h 200 \mathrm{~m}$
Tank $=n 80 \mathrm{~m}$
$=1150 \mathrm{~m}$
ensiled How $=0.6 \mathrm{l} / \mathrm{sec}$.

Horizontal Scale: 1:5000 Vertical Scale: 1/1000

$$
\begin{aligned}
& Q 32 \mathrm{~mm}=Q_{\text {mat }}=0.96 \mathrm{e} / \mathrm{sec} \rightarrow 4.6 \% \\
& Q 25 \mathrm{~mm}=Q_{\text {mat }}=0.50 \mathrm{e} / \mathrm{sec} \rightarrow 14.5 \%
\end{aligned}
$$

Pipeline section (not to scale)

[^0]: FLOWDIAGRAM (Handsketch)

