REPUBLIQUE DU MALI

MINISTÈRE DE L'INDUSTRIE DE L'HYDRAULIQUE ET DE L'ENERGIE

PROGRAMME DES NATIONS UNIES
POUR LE DEVELOPPEMENT

DIRECTION NATIONALE DE L'HYDRAULIQUE ET DE L'ENERGIE

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

Volume 1 - RAPPORT

Préparé par le Département de la Coopération Technique pour le Développement (DCTD)

- Projet MLI / 84 / 005 -

« Exploitation, évaluation et gestion des ressources en eau souterrame »

Décembre 1990

REPUBLIQUE DU MALI

MINISTERE DE L'INDUSTRIE DE L'HYDRAULIQUE ET DE L'ENERGIE PROGRAMME DES NATIONS UNIES
POUR LE DEVELOPPEMENT

DIRECTION NATIONALE DE L'HYDRAULIQUE ET DE L'ENERGIE

BARCOME 9020-1 024 MLgo

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

Volume 1 - RAPPORT

Préparé par le Département de la Coopération Technique pour le Développement (DCTD)

- Projet MLI / 84 / 005 -

« Exploitation, évaluation et gestion des ressources en eau souterraine »

Décembre 1990

PLAN DU SCHEMA DIRECTEUR

RAPPORT		Nbre pages	dont	et fig.
Résumé synth	nétique	13	-	
Chapitre 1 -	Introduction	16	4	5
Chapitre 2 -	Cadre institutionnel, législatif et financier	14	1	4
Chapitre 3 -	Environnement démographique et socio-économique	ie 24	6	4
Chapitre 4 -	Ressources en eau et modes d'exploitation	37	13	14
Chapitre 5 -	Alimentation en eau potable et assainissement	38 .	10	. 7
Chapitre 6 -	Hydraulique pastorale	27	10	. 5
Chapitre 7 -	Hydraulique agricole et autres utilisations	30	7	3
Chapitre 8 -	Politique et stratégies	15	2	<u></u>
Chapitre 9 -	Programmation 1992-2001	67	13	-
ANNEXES		281	66	42
Annexe 1 -	Rapports et documents de travail élaborés et difusés par le projet MLI/84/005 entre octobre 1984 et septembre 1990	9	_	-
Annexe 2 -	Description sommaire de la Banque de données SIGMA	17	6	5
Annexe 3 -	Assistance du PNUD dans le domaine de l'eau au Mali	10	2	2
Annexe 4 -	Calcul des coûts de l'eau d'irrigation	6	4	. -
Annexe 5 -	SIGMA : statistiques générales	49	16	·
Annexe 6 -	Normes de qualité et de potabilité des eaux	2	2	-
Annexe 7 -	Recommandations et conclusions de la Conférence Nationale sur le Secteur Eau			
	du Mali-Bamako, 25-28 juin 1990	20	-	-
		113	30	7
RAPPORT + AN	NEXES	394	96	49

NOTES

- 1 Le rapport du Schéma Directeur de mise en valeur des ressources en eau du Mali a été préparé par la Direction Nationale de l'Hydraulique et de l'Energie dans le cadre du projet MLI/84/005 "Exploitation, évaluation et gestion des ressources en eau souterraine" financé par le Programme des Nations Unies pour le Développement (PNUD) et exécuté par le Département de la Coopération Technique pour le Développement (DCTD) des Nations Unies, avec la collaboration du Comité Consultatif de l'Eau.
- 2 Les abréviations et sigles utilisés sont généralement explicités dans le texte même. Ne sont donnés ici que ceux qui sont le plus souvent utilisés :

- AEP : Alimentation en eau potable

- AEPA : Alimentation en eau potable et assainissement

- AES : Adduction d'eau sommaire

- BF : Borne fontaine - BP : Branchement privé

DCTD : Département de la Coopération Technique pour le Développement
 DIEPA : Décennie Internationale de l'Eau Potable et de l'Assainissement

- DNHE : Direction Nationale de l'Hydraulique et de l'Energie

- CES : Conservation des Eaux et des Sols

- FAO : Food and Agriculture Organization (Nations Unies)

FED : Fonds Européen de Développement
 FENU : Fonds d'Equipement des Nations Unies
 ONG : Organisation Non Gouvernementale

- PMH : Pompe à motricité humaine

- PNUD : Programme des Nations Unies pour le Développement

- PPIV : Petit périmètre irrigué villageois

- SIGMA: Système informatique de gestion des ressources en eau du Mali

- UNICEF: Organisation des Nations Unies pour l'Enfance

3 - Les unités employées et leur abréviation sont les suivantes :

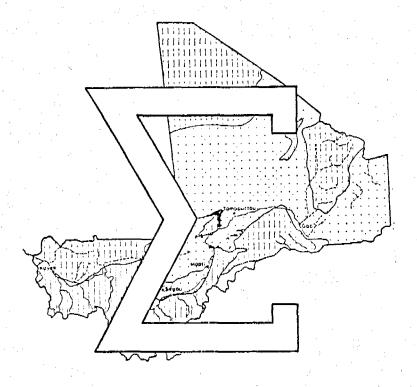
- a : an

- cm : centimètre
- F.CFA : Franc CFA
- g : gramme
- h : heure
- ha : hectare
- hab : habitant
- j : jour

kg : kilogrammekm : kilomètre

- l : litre

- m/m²/m³: mètre/mètre carré/mètre cube


- mg : milligramme
- s : seconde
- t : tonne

- UBT : Unité de Bétail Tropical (= 250 kg de poids vif)

- US\$: Dollar des Etats Unis d'Amérique

- °C : degré Celsius
- μmhos : micromhos
- h/m : homme/mois

- 4 Le rapport est présenté en 2 volumes : le premier contient le texte du rapport proprement dit, le second les 7 Annexes citées dans le texte.
- 5 Chaque chapitre comporte une page de garde et une table des matières sur fond bleu pour faciliter la recherche. Le premier chiffre de la numérotation des sous-chapitres se réfère toujours au chapitre correspondant. La numérotation des pages a été reprise à 1 dans chaque chapitre avec indication du numéro de chapitre dans le coin supérieur droit de la page.
- 6 Les références bibliographiques citées dans le texte entre crochets [], sont détaillées soit dans l'Annexe 1 pour les rapports du projet MLI/84/005, soit à la dernière page du chapitre où elles sont citées pour les autres références.
- 7 Sauf indication contraire, les montants indiqués sont en Francs CFA constants 1989. Les équivalences en dollars des Etats Unis d'Amérique ont été calculées sur la base de US\$ 1 = 300 F.CFA.
- 8 Les documents cartographiques et les appellations utilisées dans le rapport n'impliquent, de la part de l'Organisation des Nations Unies, aucune prise de position quant au statut juridique des pays, territoires, villes ou zones, ou de leurs autorités, ni quant au tracé de leurs frontières ou limites.
- 9 Les cartes en couleurs illustrant le rapport, issues pour la plupart du traitement des données de SIGMA par le logiciel ATLAS*DRAW sur table traçante, ont été généralement établies sur un découpage par Arrondissement, unité administrative de base du Mali; ce découpage, bien que n'ayant pas de signification dans le cas d'une représentation de certains éléments scientifiques dont les limites géographiques naturelles sont évidemment différentes, a été adopté car répondant mieux aux besoins d'une planification régionale et nationale.
- 10 Un certain nombre de cartes de synthèse présentées dans le rapport ne couvre pas la moitié nord et est du pays car les données sur cette zone, essentiellement désertique et peu peuplée, sont peu significatives à l'échelle utilisée ou insuffisantes pour être représentatives. Ceci a permis d'utiliser une plus grande échelle sur la partie sud et ouest, la plus peuplée du Mali, et donc de rendre ces cartes plus lisibles.
- 11 Les statistiques ont été effectuées sur les données de la Banque SIGMA arrêtées, en ce qui concerne les forages, puits, pompes, essais, analyses chimiques, au 31 Décembre 1988. Les données ultérieures ont été introduites dans la banque SIGMA actualisée au 31 août 1990, mais n'étaient pas traitées au moment de l'élaboration du rapport.

SCHEMA DIRECTEUR
DE MISE EN VALEUR DES RESSOURCES EN EAU
DU MALI

RESUME SYNTHETIQUE DU RAPPORT

RESUME SYNTHETIQUE DU RAPPORT

1 - PRESENTATION

L'élaboration par la Direction Nationale de l'Hydraulique et de l'Energie d'un Schéma Directeur de mise en valeur des ressources en eau du Mali a été rendue possible grâce au soutien continu du Programme des Nations Unies pour le Développement qui a financé depuis 1967 une succession de cinq projets d'appui à la DNHE dans le domaine des eaux souterraines pour un montant de près de US\$ 35 millions.

Le bilan de l'assistance apportée par le PNUD au Gouvernement du Mali jusqu'à présent est substantiel: 20% des forages d'eau existants, plus de 40 cadres techniques de la DNHE formés par les projets successifs, mise au point de méthodes éprouvées d'implantation des forages se traduisant par des taux de réussite très élevés (jusqu'à 80% dans les aquifères fissurés et pratiquement 100% dans les aquifères généralisés), une maîtrise quasi totale de la DNHE dans le domaine des eaux souterraines et une logistique opérationnelle permettant à la DNHE d'intervenir efficacement dans tous les domaines du développement des eaux souterraines. Par ailleurs, les projets ont mis en lumière des possibilités d'utilisation des eaux souterraines d'extrême importance pour le développement du Mali, à savoir:

- 40% des forages ont un débit exploitable supérieur à 5 m3/h qui permet d'envisager la création de micro ou de petits périmètres d'irrigation villageois,
- le renouvellement des ressources ourecharge des aquifères est suffisant pour garantir un développement socio-économique raisonnable du Mali.

Parallèlement, les Nations Unies et la France ont soutenu l'action de la DNHE dans le domaine des eaux de surface, surtout en ce qui concerne les grands fleuves permanents, par la mise en place d'un important réseau de mesures hydrologiques et météorologiques le long des fleuves Niger et Sénégal et de leurs principaux affluents pérennes.

Sur la base de ces acquis, le projet actuel du PNUD a été orienté vers la planification de l'utilisation des ressources en eau en fonction des exigences posées par le développement socio-économique du Mali, avec l'objectif principal de contribuer à la préparation d'un Schéma Directeur de mise en valeur des ressources en eau. L'adéquation des ressources et des besoins requérait l'acquisition de données fiables correspondantes et la mise au point d'un système informatique de stockage, de traitement et de présentation des données sous la forme requise pour les besoins de planification.

Les études hydrologiques et hydrogéologiques, les prospections, les travaux de forages, les inventaires et les enquêtes réalisés dans le cadre de la DNHE ont permis ainsi l'accumulation d'une masse considérable de données provenant des nombreux projets qui, surtout depuis la fin des années 70, ont été exécutés au Mali pour faire face à la pénurie d'eau engendrée par la sécheresse.

L'informatisation de ces données, leur analyse et leur traitement statistiques ont conduit tout naturellement à un constat synthétique de l'état des ressources en eau du Mali, de leur exploitation, des besoins et des difficultés et contraintes qui en limitent ou gênent le développement.

A partir de là, il était devenu possible de redéfinir une politique et des stratégies prenant en compte tous ces éléments et de quantifier une programmation à moyen terme devant permettre d'aboutir à deux résultats majeurs :

- la satisfaction des besoins en eau de qualité des 10 millions d'habitants et des 5 à 6 millions d'Unités de Bétail Tropical (UBT) projetés pour le Mali à l'an 2001,
- la mise à disposition des populations de ressources en eau suffisantes pour le développement d'activités susceptibles d'améliorer leur niveau de vie et de revenu (élevage, irrigation, industrie, artisanat,...).

Le Schéma Directeur vise donc à être avant tout un instrument de planification du Secteur de l'Eau au Mali pour les 10 années à venir, c'est-à-dire au cours des deux prochains plans quinquennaux 1992-96 et 1997-2001. Il s'insère dans les priorités définies par le Parti et le Gouvernement dans le Plan national de développement économique et social, à savoir : la sécurité alimentaire, la lutte contre la désertification et les effets de la sécheresse, la satisfaction des besoins de base des populations. Il participe en outre à la mise en oeuvre des nouvelles orientations du pays dans les domaines institutionnels, structurels et juridiques ainsi qu'en matière de privatisation et d'emploi.

Le Schéma Directeur traite des eaux souterraines, les mieux connues actuellement grâce aux multiples études et travaux menés au Mali depuis plus de 20 ans, et des eaux de surface permanentes des grands fleuves suivies depuis longtemps et utilisées essentiellement pour l'alimentation en eau de grandes villes (Bamako notamment), pour l'irrigation de grands périmètres tels ceux de l'Office du Niger et pour l'arrosage de jardins sur leurs berges. Mais le Schéma Directeur s'intéresse également, bien que peu connues, aux eaux de surface non pérennes des milliers de petits bassins versants existant au Mali et qui collectent durant l'hivernage des volumes d'eau considérables, perdus pour la plupart faute d'aménagements fiables pour les exploiter.

A la différence des eaux de surface pérennes dont la mise en valeur est limitée aux abords immédiats des fleuves et dont l'exploitation peut être faite à grande échelle à partir de grands aménagements hydrauliques, les eaux souterraines et les eaux de surface non pérennes ont l'avantage d'être présentes sur tout le territoire, mais leur mise en valeur est limitée par leur accessibilité, leur exploitabilité et leur pérennité; elles sont par contre bien adaptées à des actions de développement à l'échelle villageoise et donc plus faciles à maîtriser par les populations rurales, notamment dans le cadre d'une approche globale d'aménagement de terroir.

2 - RESSOURCES EN EAU ET DEVELOPPEMENT

Les nombreux projets exécutés dans le cadre de la DNHE ont permis d'arriver à une bonne connaissance des ressources en eau souterraine. Toutes les régions du Mali ont été prospectées et étudiées à divers niveaux, mais toujours de façon suffisante à l'échelle régionale, sauf pour les régions désertiques du nord. La mise en place d'un réseau d'observation de plus de 200 piézomètres depuis le début des années 80 constitue en outre un apport essentiel à l'estimation de la recharge et du bilan des aquifères. Il en est de même avec le régime des eaux des grands fleuves étudié depuis 1960 par 85 stations hydrologiques.

Ce n'est pas, hélas, le cas des ressources en eau de surface non pérenne qui n'ont pas été étudiées de façon systématique et qui ne sont pas non plus contrôlées par un réseau d'observation. Pourtant, ces ressources sont intimement liées aux eaux souterraines, à travers leurs relations de recharge ou de drainage, avec les quelles elles peuvent le plus souvent être exploitées sur un même site pour des usages et des périodes complémentaires les uns des autres.

Globalement, les ressources en eau du Mali sont relativement abondantes. Bien que non connues avec précision, les eaux de surface non pérennes représentent un potentiel considérable encore très peu exploité tandis que les eaux souterraines ont un taux de renouvellement annuel de 55 milliards de m³ alors qu'on en exploite actuellement seulement 106 millions, à peine 0,2 %, et ceci sans compter les réserves des aquifères qui sont de l'ordre de 2.700 milliards de m³. Les eaux des grands fleuves représentent des ressources encore plus importantes, notamment grâce aux barrages de Markala et de Selingué, dans le bassin du Niger, et de Manantali dans le bassin du Sénégal.

Mais cet énorme capital n'est pas aisé à mettre en valeur : d'accès souvent difficile, il nécessite des technologies coûteuses et des investissements élevés qui rendent sa rentabilité souvent aléatoire.

Il permet cependant d'envisager un aménagement équilibré du territoire dans le cadre d'une programmation réaliste qui, tout en protégeant et restaurant l'environnement, soit au service du développement de l'ensemble du pays et de sa population.

Cette programmation doit permettre notamment d'ici 2001 :

- de fournir de l'eau potable aux 5,6 millions de ruraux habitant les quelques 10.000 villages de moins de 2.000 habitants, à un coût modéré, contribuant ainsi à leur fixation et à leur croissance, donc à la lutte contre l'exode rural,
- de doter les 2,1 millions de personnes vivant dans les 639 centres ruraux et semiurbains, de 2.000 à 10.000 habitants, prévus en 2001, d'un système d'adduction d'eau sommaire, contribuant ainsi à une structuration de l'espace rural par la création de pôles de développement et, par là-même, à une décentralisation administrative et économique qui favorisera le développement du secteur privé et l'émergence d'initiatives de base,
- d'améliorer et d'étendre les réseaux d'adduction d'eau potable pour couvrir la totalité des besoins des 2,3 millions d'habitants prévus en 2001 dans les 22 grandes villes du Mali (Centre urbains de plus de 10.000 habitants),
- d'établir un diagnostic et un programme d'actions à long terme du sous-secteur de l'assainissement tant en milieu rural qu'urbain,
- de mettre en place une stratégie de l'hydraulique pastorale visant à créer un réseau de points d'eau adapté aux besoins, contribuant ainsi à une exploitation rationnelle des ressources fourragères et à une croissance mieux maîtrisée du bétail dans le cadre de la nouvelle politique de l'élevage,

- de parvenir à une répartition plus équilibrée des bénéfices de l'irrigation par une utilisation plus étendue et mieux adaptée du potentiel agricole pouvant générer des revenus, contribuant ainsi à l'autosuffisance alimentaire et à l'amélioration du niveau de vie des populations rurales. La programmation portera notamment sur la réhabilitation et l'extension des grands périmètres irrigués à partir des fleuves et sur la mise en route d'un premier volet de petits périmètres irrigués villageois à partir des eaux de surface non pérennes et des eaux souterraine.

Le Schéma Directeur s'adresse également aux femmes, principales pourvoyeuses d'eau qui y consacrent une trop grande partie de leur temps et de leurs forces. Rapprocher l'eau potable de leur lieu d'habitation constituera un gain considérable sur le plan de l'hygiène et de la santé. Cela leur permettra de consacrer plus de temps à l'éducation de leurs enfants et à des activités de rente auxquelles elles s'intéressent tout particulièrement (artisanat, jardinage, petit élevage). On augmentera également les chances de succès des programmes d'éducation sanitaire, notamment en ce qui concerne l'assainissement, et, par suite, on diminuera le taux actuellement élevé de morbidité d'origine hydrique chez les enfants. Enfin, il a été démontré que la participation des femmes pour la gestion des points d'eau est un gage de meilleure efficacité (Chapitre 3).

La mise en valeur des ressources en eau de surface non pérenne et en eau souterraine telle que programmée dans le Schéma Directeur constituera, grâce à l'ubiquité de ces ressources, un puissant facteur de protection et de restauration de l'environnement. L'aménagement des terroirs, rendu possible par la mise à disposition d'une eau en quantité suffisante et par la mise en oeuvre de technologies simples de conservation des eaux et des sols, aura pour effet une meilleure occupation des sols. La création de bosquets et de haies vives et le développement de pépinières villageoises prévus par le Plan forestier participeront également à la protection des sols.

3 - SITUATION ACTUELLE

- (1) Les réalisations de mise en valeur des ressources en eau, souterraines notamment, ont connu un développement spectaculaire ces 15 dernières années :
- en hydraulique villageoise et pastorale, 1.500 puits modernes et plus de 12.000 forages dont 8.500 productifs et 6.200 équipés de pompes à motricité humaine et une centaine de pompes solaires, ont été réalisés;
- en hydraulique urbaine, 24 villes ont été équipées de systèmes d'adduction d'eau potable et 5 autres sont sur le point de l'être;
- en hydraulique agricole, l'essentiel des investissements a porté sur les eaux pérennes des grands fleuves (3 grands barrages, canaux d'irrigation, etc...); sur le reste du territoire, plus de 200 petits barrages ont été construits et de nombreux aménagements de bas-fonds ont été réalisés, souvent avec l'aide d'ONG. De nombreux micropérimètres (quelques dizaines d'ares) à partir des pompes manuelles et petits périmètres (1 à 2 hectares) utilisant l'énergie solaire pour l'exhaure se sont développés, notamment sous l'impulsion des femmes et des groupes de jeunes;
- en assainissement, en dehors des grands centres urbains où la situation s'est bien améliorée, beaucoup reste encore à faire, surtout en milieu rural.

- (2) Sur le plan technique, des méthodes d'implantation et d'exécution des forages de plus en plus performantes ont été mises au point et généralisées. Elles ont amené une augmentation spectaculaire du taux de réussite des forages (actuellement de plus de 70% en moyenne nationale), une plus grande rapidité d'exécution et un abaissement (en francs constants) du coût moyen des ouvrages. L'introduction systématique de la pompe à motricité humaine (notamment celle fabriquée au Mali) a été, malgré de nombreuses difficultés de maintenance, une greffe technique réussie car acceptée par le monde rural.
- (3) Ces réalisations n'ont été rendues possibles qu'avec l'aide de la communauté internationale qui a consacré, ces 5 dernières années, 56 milliards de F.CFA à l'hydraulique villageoise et pastorale, 21,5 à l'hydraulique urbaine, 22 à l'assainissement et plus de 100 à l'hydraulique agricole (hors barrages).
- (4) L'importance de ces réalisations est évidente, mais elle n'est pas à la mesure des besoins :
- en hydraulique villageoise: 4.300 villages et centres ruraux sur 10.600, soit 40 %, ont été dotés d'un équipement moderne (forage ou puits). Selon la norme adoptée au début de la Décennie Internationale de l'Eau Potable et de l'Assainissement (40 l/j/hab), ces équipements ne satisfont les besoins que de 20 % de la population rurale et sont en outre mal répartis entre les 7 Régions du Mali où les taux varient de 7,5 à 30 %, certains villages étant par contre suréquipés par rapport à la norme. Ainsi, la grande majorité de la population continue à s'alimenter aux points d'eau traditionnels le plus souvent pollués;
- en hydraulique urbaine: 19 des 22 centres urbains et 10 centres semi-urbains ont été équipés ou sont sur le point de l'être, mais au total seulement 42 % de la population urbaine et 5 % de la population semi-urbaine a accès à l'eau potable par branchement privé ou borne fontaine. En milieu urbain aussi, le recours aux points d'eau traditionnels (puits de concession) est donc pratiqué très largement;
- en hydraulique pastorale: la création de nouveaux points d'eau pour faire face à la sécheresse n'a pas été suffisante pour limiter les pertes considérables de bétail (bovins notamment) et la dégradation des pâturages autour des points d'eau existant en nombre insuffisant, ce qui a amené l'exode massif des troupeaux vers le Sud. On estime que les besoins actuels du bétail (159.000 m³/jour) sont couverts (bien que de façon précaire), mais il faudra mettre à sa disposition d'ici 2001 près de 42.000 m³/jour supplémentaires pour arriver à couvrir les besoins prévisionnels du cheptel;
- en hydraulique agricole: l'essentiel des efforts a porté sur les aménagements à partir des grands fleuves pérennes ou sur des zones fortement encadrées, mais l'intérêt de plus en plus marqué par les villageois (et les villageoises) pour les petits périmètres irrigués à partir des eaux de surface non pérennes et des eaux souterraines est un signe prometteur pour l'avenir.
- (5) L'impact limité de ces réalisations hydrauliques s'explique par un certain nombre de contraintes d'ordre stratégique, institutionnel, technique, financier et socio-économique:
- sur le plan de la stratégie de l'hydraulique villageoise basée sur le forage équipé d'une pompe manuelle pour 200 habitants, la situation d'urgence créée par la sécheresse, l'insuffisance de structures de planification et de procédures de coordination ont conduit l'Administration à combiner plusieurs approches:

- * une approche technique qui consistait à obtenir les meilleurs débits possibles sans tenir assez compte des besoins réels et de la nécessité de placer les points d'eau au plus près des utilisateurs. Par contre, cela a permis de montrer que des utilisations élargies plus rentables pouvaient être mises en oeuvre à partir des forages (adduction d'eau, irrigation);
- * une approche sanitaire qui a consisté à fournir de l'eau de bonne qualité, mais sans campagne préalable ou concommitante d'éducation sanitaire, d'où un impact peu significatif sur la santé;
- * une approche financière et contractuelle qui a favorisé le rendement des foreuses (et la diminution des coûts) aux dépens d'une répartition équilibrée des forages entre les villages ou selon les utilisations sans tenir compte ni des besoins réels, ni des souhaits des villageois, d'où, dans certains cas, une sous-exploitation des infrastructures, quelquefois même une désaffection des utilisateurs ;notamment, l'équipement de nombreux Centres ruraux et semi-urbains selon les normes de l'hydraulique villageoise a conduit à multiplier les forages sans pour autant couvrir les besoins alors qu'un ou deux forages exploités à plus gros débit auraient suffi le plus souvent à les couvrir.

Ces approches ont toutes présenté des aspects positifs, mais partiels par rapport aux objectifs. Il ressort très clairement aujourd'hui qu'à l'approche essentiellement technocratique utilisée, il aurait fallu associer très étroitement et dès le départ une approche participative qui intègre les souhaits des populations et permette ainsi d'obtenir leur adhésion.

- sur le plan de la stratégie de l'hydraulique urbaine, on a équipé en priorité les villes les plus importantes, et surtout la capitale, de systèmes d'adduction d'eau potable fiables. Ce résultat a été atteint, mais n'a permis de couvir qu'une partie seulement (à peu près la moitié) de la population urbaine, car, le plus souvent, l'exode des ruraux vers les villes a amené une croissance urbaine qui a dépassé les prévisions et les capacités d'extension des réseaux existants. Cette stratégie s'est également développée aux dépens des localités intermédiaires (Centres semi-urbains), quelques unes seulement ayant été équipées d'un système de distribution.
- sur le plan de la stratégie de l'hydraulique pastorale, ont s'est heurté également, compte tenu de la situation critique du cheptel due à la sècheresse, à une insuffisance de concertation pour la création et la répartition des points d'eau, la stratégie étant basée plus sur des occasions de financement que sur une programmation planifiée, en dépit de l'existence d'une stratégie de l'élevage bien définie.
- sur le plan de la stratégie de l'hydraulique agricole, la mise en valeur des grands périmètres irrigués à partir des eaux de surface pérennnes, plus attractive pour les investisseurs et aménageurs, a été largement favorisée par rapport aux autres aménagements. Cependant, les difficultés de gestion et le coût élevé auxquels se sont ajoutés les problèmes créés par la baisse du niveau des crues liée à la sècheresse, font que la stratégie actuelle tend à donner une plus large place à la petite irrigation, notamment à partir d'aménagements utilisant les eaux de surface non pérennes.
- sur le plan des institutions, la contrainte majeure a été l'insuffisance de coordination entre les nombreux intervenants du Secteur et une trop forte centralisation du niveau de décision. La nomination récente d'un Comité Consultatif de l'Eau ainsi que l'adoption de la loi réglementant le Régime des Eaux au Mali constituent une première étape vers une meilleure coordination et une gestion concertée du Secteur.

- sur les plans technique et financier, les ouvrages et les équipements d'hydraulique restent encore chers et liés aux entreprises étrangères. On n'a pas testé des ouvrages et des équipements moins coûteux, notamment l'amélioration ou la réhabilitation de certains points d'eau traditionnels qui conserveront longtemps encore la préférence des populations ou bien la mise au point et la construction de petits ouvrages de retenue fiables et peu coûteux, réalisables en grande partie avec les villageois. L'absence de promotion d'un véritable secteur privé local et d'un système de crédit efficace pour les réalisations et les équipements hydrauliques n'a pas favorisé l'éclosion d'entreprises privées et d'initiatives de base qui auraient pu amener une réduction des coûts et un meilleur impact des actions. En ce qui concerne les moyens d'exhaure, la pompe à motricité humaine s'est bien développée mais les difficultés liés à l'entretien, aux réparations et à l'approvisionnement en pièces détachées n'ont pas trouvé de solution durable, bien que la limitation actuelle à 3 ou 4 marques de pompes soit un début de solution. Par ailleurs, d'autres moyens d'exhaure plus performants n'ont pas été développés (pompes à traction animale) ou insuffisamment pour en faire baisser le prix (pompes solaires, bien que le Mali soit actuellement le pays du Sahel le plus équipé). En ce qui concerne les adductions d'eau, on s'aperçoit que les consommations unitaires sont bien inférieures aux prévisions à la fois parce que l'eau est trop chère (aux branchements privés notamment) ou trop rare et trop lointaine (aux bornes fontaines).
- sur le plan socio-économique, les contraintes sont nombreuses et bien connues. Elles sont dûes pour la plupart à l'insuffisance de participation des populations aux programmes de développement des ressources en eau qui les concernent directement, tant au niveau de la conception que de l'exécution, et, par suite, leur manque de motivation pour l'entretien et la réparation d'infrastructures dont ils ne se sentent pas responsables. Bien que l'Administration ait mis en place une stratégie de sensibilisation, d'animation et de formation et une politique de développement à la base, leur impact sur le terrain est encore trop limité faute de moyens, de coordination et de planification.

4 - LE SCHEMA DIRECTEUR

(1) Les Chapitres 1 à 7 du rapport analysent en détail les éléments décrits ciavant : définition et objectifs, cadres institutionnel, législatif, technique, financier et socio-économique, situation actuelle et contraintes de l'approvisionnement en eau potable des populations, de l'abreuvement du bétail et de l'utilisation de l'eau pour le développement agricole.

Les deux derniers chapitres (Chapitres 8 et 9) du Schéma proposent respectivement, d'une part une politique et des stratégies fondées sur l'expérience acquise, d'autre part une programmation détaillée des investissements et de l'assistance technique à fournir d'ici 2001, c'est-à-dire sur les deux prochains plans quinquennaux du Mali, pour atteindre les objectifs que s'est fixé le Schéma Directeur, à savoir :

- la couverture totale des besoins en eau des populations sur la base de normes plus réalistes,
- la couverture totale des besoins en eau du bétail dans le cadre de la nouvelle politique de l'élevage,
- la mise en oeuvre d'un programme de réhabilitation de la grande irrigation et de développement de la petite irrigation dans le cadre d'une politique d'aménagement de terroir.

En ce sens, le Schéma Directeur participera aux trois grands objectifs prioritaires du Mali que sont :

- la satisfaction des besoins de base des populations,
- la sécurité et l'autosuffisance alimentaires,
- la lutte contre la désertification.
- (2) La politique et la stratégie d'ensemble pour atteindre ces objectifs sont basées sur le principe d'une approche globale du Secteur Eau et consisteront à :
- mobiliser tous les acteurs du Secteur Eau et plus particulièrement les populations bénéficiaires dont la participation et l'adhésion seront recherchées en préalable à tout projet les concernant,
- redéfinir les objectifs, les moyens et les rôles respectifs des intervenants, notamment aux niveaux décentralisés,
- rééquilibrer les réalisations entre les Régions en fonction d'objectifs sociaux et économiques tenant compte des acquis techniques,
- susciter l'entreprise privée et les initiatives de base en vue de parvenir à un désengagement progressif de l'Etat.

Ceci implique que la politique de l'eau concilie le réalisme et le volontarisme dans le cadre d'une planification renforcée et d'une coordination indispensable qui devront se traduire :

- par un renforcement de la Direction Nationale de l'Hydraulique et de l'Energie, principal promoteur du Secteur, dans le domaine de la planification et de la gestion au niveau central, mais aussi et surtout au niveau régional (suivi et mesures d'impact),
- par un renforcement de la coordination interministérielle dans le cadre du Comité de l'Eau, organisme de pilotage du Schéma Directeur,
- par la mise en place de mécanismes de coordination avec les bailleurs de fonds, les ONG et le secteur privé en vue d'assurer l'homogénéité, la cohérence et la pérennité des actions entreprises et leur adaptation à l'évolution des besoins,
- par la mise en application d'un cadre juridique non contraignant, mais définissant clairement les attributions, les responsabilités et les obligations de tous les partenaires du Secteur,
- par la mise en place d'un système de crédit et de procédures financières susceptibles de favoriser l'émergence des initiatives de base des collectivités et du secteur privé,
- par un renforcement de la connaissance du milieu permettant, par un meilleur dialogue avec les bénéficiaires, une approche plus réaliste de leurs besoins tenant compte de leurs souhaits et de leurs spécificités socio-culturelles.

Cette approche globale, pour être appliquée, devra recevoir l'aval et le soutien du Gouvernement.

(3) Des stratégies spécifiques devront être mises en oeuvre pour chaque soussecteur de l'Eau telles que détaillées au chapitre 8.

La programmation proposée au Chapitre 9 traduit les stratégies en actions concrètes, chiffrées, à mener dans les 10 prochaines années. Elle se présente sous la forme de :

- 12 projets nationaux d'appui et d'assistance technique,
- 21 programmes régionaux dissociables entre plusieurs sources et types de financements, par Plan et par sous-secteur de l'Eau.

Le montant global de cette programmation est de 261 milliards de F.CFA (US\$ 870 millions) dont 6,65 milliards pour les projets (2,5 %) et 254,35 milliards pour les programmes (qui incluent les études et le suivi pour 14,9 milliards, soit environ 6 %).

Les 12 projets nationaux, tous à inscrire sur le 1er Plan quinquennal, sont des projets d'accompagnement ou de préparation indispensables au succès des programmes régionaux d'investissement correspondants. Ils comprennent :

- A1 Un projet d'appui à la planification et au développement régional du Secteur de l'Eau pour une durée de 4 ans (1992-95) et un budget de 1,65 milliard de F.CFA dont 1,35 de financement externe (US\$ 4,5 millions).
- A2 Un projet d'appui à la gestion des systèmes d'alimentation en eau, au développement de l'assainissement et aux initiatives de base en milieu rural pour une durée de 4 ans (1991-1994) et un budget de 1 milliard de F.CFA dont 850 millions de financement externe (US\$ 2,8 millions).
- A3 Un projet de réactualisation du Schéma Directeur sectoriel de l'AEP urbaine et d'appui à la gestion des systèmes d'eau potable en milieu urbain pour une durée de deux ans (1992-1993) et un budget de 320 millions de F.CFA dont 300 de financement externe (US\$ 1 million).
- A4 Un projet de diagnostic du Secteur de l'Assainissement en milieu urbain et d'élaboration d'un programme d'actions à long terme pour une durée de deux ans (1992-1993) et un budget de 400 millions de F.CFA dont 360 de financement externe (US\$ 1,2 million).
- A5 Un projet d'appui à la création d'entreprises publiques, parapubliques ou privées d'études, d'équipements et de travaux hydrauliques et d'assainissement pour une durée de 5 ans (1992-1996) et un budget de 700 millions de F.CFA dont 500 de financement externe (US\$ 1,7 million).
- A6 Un projet d'appui à l'hydraulique pastorale, dans le cadre de la planification du Secteur Elevage, pour une durée de 2 ans (1992-1993) et un budget de 100 millions de F.CFA (US\$ 330.000) entièrement sur financement externe.
- A7 Un projet de conception et de construction de six ouvrages-types d'aménagement des eaux surface non pérennes pour l'élevage et l'irrigation, avec une durée de 3 ans (1991-1994) et un budget de 450 millions de F.CFA dont 330 (US\$ 1,1 million) d'apport externe;
- A8 Un projet d'étude des possibilités de mise en valeur des ressources en eau de surface non pérenne, complémentaire du projet A7, pour une durée de 4 ans (1991-1994) et un budget de 590 millions de F.CFA dont 490 (US\$ 1,6 million) d'apport externe.

- A9 Un projet de diagnostic et de planification sectorielle de l'irrigation à partir des eaux souterraines comprenant des enquêtes et des expérimentations in situ (projets pilotes), pour une durée de 3 ans (1992-1994) et un budget de 350 millions dont 300 (US\$ 1 million) d'apport externe.
- A10- Un projet de planification de la mise en valeur des ressources en eau de surface pérenne pour le développement de l'hydraulique agricole dans le cadre de schémas d'aménagement régionaux et venant en complément des projets A8 et A9, pour une durée de deux ans (1992-1993) et un budget de 500 millions de F.CFA dont 450 de financement externe (US\$ 1,5 million).
- All- Un projet d'étude intégrée et multisectorielle du delta intérieur du fleuve Niger, notamment sur son fonctionnement hydraulique, pour une durée de 2 ans (1992-1993) et un budget de 250 millions de F.CFA dont 200 de financement externe (US\$ 670.000).
- A12- Un projet de vulgarisation des techniques d'épandage de crue en zone sahélienne comprenant des opérations pilotes de conservation des eaux et des sols, pour une durée de 4 ans (1992-1995) et un budget de 340 millions de F.CFA dont 300 de financement externe (US\$ 1 million).
- Les 21 programmes régionaux d'investissement se répartissent sur les 2 prochains Plans et, aussi équitablement que possible, entre les 7 Régions du Mali et en fonction des besoins identifiés dans chaque sous-secteur de l'Eau. Ils devraient permettre un rééquilibrage de la couverture des besoins d'ici 2001 en fonction de la situation actuelle dans les Régions et des nouvelles normes nationales adoptées. Ils se répartissent entre :
- 7 programmes (B1 à B7) d'hydraulique villageoise et d'assainissement en milieu rural (1 par Région) divisibles en 14 sous-programmes (1 par Région et par Plan), pour un montant de 72,63 milliards de F.CFA,
- 7 programmes (B8 à B14) d'adductions d'eau sommaires et d'assainissement pour les centres ruraux et semi-urbains divisibles également en 14 sous-programmes, pour un montant de 27 milliards de F.CFA,
- 1 programme (B15) d'hydraulique urbaine divisible en 7 sous-programmes par Région, pour un montant de 30 milliards de F.CFA,
- 1 programme (B16) d'assainissement urbain divisible en 7 sous-programmes par Région, pour un montant de 10 milliards de F.CFA,
- 2 programmes (B17 et B18) d'hydraulique pastorale, pour un montant de 13,5 milliards de F.CFA,
- 3 programmes (B19 à B21) d'hydraulique agricole, à partir des eaux de surface pérennes et non pérennes et à partir des eaux souterraines pour un montant global de 101,22 milliards de F.CFA (dont 93,52 pour les eaux de surface pérennes).

Des fiches succinctes d'identification de ces projets et de certains programmes sont présentées au Chapitre 9. Pour l'hydraulique villageoise et les adductions d'eau sommaires, étant donné la reproductibilité de ces fiches, 1 exemple seulement de chaque est présenté (pour la Région de Mopti et sur le 1er Plan 1992-1996).

(4) L'hydraulique villageoise et l'assainissement rural reçoivent une part importante des investissements avec 72,63 milliards de F.CFA (28,5 % de la programmation régionale) sur les 2 prochains Plans: 27,52 milliards (37,9 %) sur le 1er et 45,11 milliards (62,1 %) sur le 2e, répartis entre les 7 Régions avec priorité à la Région de Mopti qui recevra 24 % des investissements du sous-secteur.

Ce programme permettra de couvrir tous les villages de plus de 400 habitants et une partie des villages de moins de 400 habitants, non seulement en équipant selon les normes retenues les quelques 6.000 villages dépourvus qui représentent près de 3,6 millions de personnes (35,6 % de la population totale en 2001), mais aussi en améliorant la situation des villages équipés (2 millions de personnes) par la réhabilitation d'ouvrages et d'équipements existants et la réalisation d'ouvrages complémentaires selon les besoins. On prévoit notamment d'équiper tous les villages de 1 à 2 puits traditionnels améliorés pour les usages autres que domestiques (arrosage, banco, abreuvement du bétail) afin d'entamer une politique de "spécialisation" des points d'eau. La construction d'une latrine simple par concession, précédée de la mise au point d'une technologie adaptée et de campagnes de sensibilisation et d'animation, sera réalisée.

Le sous-détail des coûts s'établit ainsi (en millions de F.CFA) :

- Réhabilitation d'ouvrages existants et création de puits traditionnels améliorés (environ 11.000)	6.025
- Création de puits modernes (1.800 environ)	17.950
- Création de forages (7.200 environ)	35.900
- Réhabilitation (5.800) et installation (7.200) de pompes manuelles	3.015
- Assainissement (1 latrine simple/10 personnes)	5.630
- Etudes, suivi, sensibilisation, animation et formation	4.110
andre de la companya de la companya La companya de la co	72.630

(5) Les adductions d'eau sommaires et l'assainissement des centres ruraux et semi-urbains représentent également une part notable des investissements avec un total de 27 milliards de F.CFA (10,6 % de la programmation régionale) sur les 2 prochains Plans: 9,7 milliards (36 %) sur le 1er Plan et 17,3 (64 %) sur le 2e, répartis entre les 7 Régions avec 21,5 % sur les centres de la Région de Kayes, la moins équipée actuellement.

Ce programme permettra de doter 629 localités de 2.000 à 10.000 habitants de systèmes d'adduction d'eau moderne, essentiellement par bornes fontaines, qui couvriront les besoins en eau potable de plus de 2 millions d'habitants en 2001 (20,8 % de la population projetée). Des études d'avant projet définiront, selon la taille des localités et leur situation, les conditions de réalisation en essayant toujours de trouver le meilleur réseau de distribution pour rapprocher l'eau des consommateurs. La vente de l'eau devra être organisée pour assurer le fonctionnement et l'entretien des installations et, dans certain cas, rembourser l'investissement.

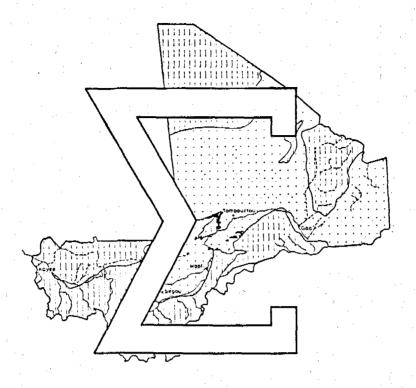
Le sous-détail des coûts s'établit en fonction de la taille des localités et des conditions hydrogéologiques favorables (F) ou défavorables (D) (en millions de F.CFA):

		·						27.000				
_	Etude, suivi,	animat	ion	et for	mation			1.510				
-	Assainissemen	t						2.093				
-	Localités de	7.500	à	10.000	(24)			1.360	(F:1.100	+	D:	260)
-	Localités de	5.000	à	7.500	(43)	1 1		1.903	(F:1.591	+	D:	312)
· <u>-</u>	Localités de	4.000	à	5.000	(57)			2.277	(F:1.332	+	D:	945)
-	Localités de	3.000	à	4.000	(139)			5.097	(F:3.850	+	D:1.	247)
-	Localités de	2.000	à	3.000	(366)		•	12.760	(F:7.520	+	D:5.	240)

soit une moyenne de 43 millions de F.CFA par localité, les coûts unitaires des adductions variant entre 32 et 65 millions de F.CFA.

- (6) L'hydraulique et l'assainissement urbains représentent un investissement de 40 milliards de F.CFA dont 30 pour l'AEP et 10 pour l'assainissement (15,7 % de l'ensemble des programmes régionaux) qui intéressera 31 villes et portera surtout sur l'amélioration et l'extension des systèmes existants afin de parvenir à une couverture complète des besoins en eau et en assainissement de la population urbaine telle que prévue en 2001.
- (7) L'hydraulique pastorale nécessite un investissement de 13,5 milliards de F.CFA (5,3 % de l'investissement régional) répartis sur deux programmes généraux pour couvrir l'ensemble des besoins en eau complémentaires du bétail selon son évolution prévisible (5,64 millions d'unités de bétail tropical estimées pour 2001). Ces montants sont seulement indicatifs dans la mesure où cette évolution est subordonnée à la politique de l'élevage d'une part et aux possibilités de commercialisation de la viande d'autre part. Ces programmes généraux peuvent également être subdivisés en sousprogrammes par Région et par Plan.
- L'hydraulique agricole totalise la part la plus importante des investissements avec 101,22 milliards de F.CFA (près de 40 % des investissements), mais qui seront affectés essentiellement aux aménagements et à la réhabilitation des périmètres irrigués à partir des eaux de surface pérennes (93,52 milliards de F.CFA soit 92 %). En ce qui concerne l'irrigation à partir des eaux de surface non pérennes et des eaux souterraines, les programmes d'investissement ont été volontairement restreints étant donné les incertitudes quantaux possibilités de création de petits périmètres irrigués villageois qui seront étudiées par les projets actuellement prévus ou programmés. La programmation proposée affecte donc seulement 7,7 milliards de F.CFA (3 % de la programmation régionale) dont les 3/4 sur le 2e Plan. Elle prévoit d'équiper d'infrastructures hydrauliques 2.320 localités pour irriguer autant de micro ou petits périmètres de différentes tailles (de 0,5 à 5, hectares) totalisant une superficie de 2.500 hectares. Comme pour l'hydraulique pastorale, les programmes proposés peuvent être subdivisés en sous-programmes par Région.

L'objectif sera avant tout de susciter l'initiative des paysans de manière à ce que la création des périmètres soit le résultat d'un besoin et d'une demande clairement exprimés et traduits par un engagement contractuel.


- (9) Dans le domaine des autres utilisations de l'eau (industrie, mines, artisanat, pisciculture, tourisme, etc...), les besoins sont actuellement impossibles à évaluer et devront être couverts au fur et à mesure de la demande sachant que dans la plupart des cas elle pourra être satisfaite par des études et des réalisations ponctuelles.
- (10) La mise en œuvre du Schéma Directeur nécessitera tout d'abord son intégration dans le Plan de développement économique et social 1992-1996. Elle deviendra ensuite la responsabilité du Comité Consultatif de l'Eau (dans le cadre de la Sous-Commission Nationale de Planification de l'Eau) dont il faudra renforcer la structure, les attributions et les moyens (Chapitre 9 : Fiche de projet A1).

A cette mise en oeuvre, sera également liée la prise de position des bailleurs de fonds qui devront se prononcer sur les propositions du Schéma Directeur. Pour ce faire, durant le premier semestre de 1991, un dossier technique et financier sera préparé et soumis aux bailleurs de fonds en préparation à une table ronde au cours de laquelle les intentions et possibilités de financement devraient se faire jour. Parallèlement, la Direction Nationale de l'Hydraulique et de l'Energie devra renforcer ses structures de planification au niveau central et surtout régional (Chapitre 9: Fiche de projet A1).

Le Gouvernement devra enfin trouver les modalités de mise en place d'un financement national et régional des programmes, d'un Fonds National de l'Eau et d'un Office National des Puits et Forages.

Le Schéma Directeur présenté dans ce rapport ne constitue qu'une première phase ou étape dans l'élaboration d'un futur Plan Directeur. Le rapport identifie en effet les compléments d'information dans les domaines où celle-ci fait défaut ou est encore trop limitée (ressources en eau de surface, contexte socio-économique, assainissement, potentiel de micro ou petite irrigation, potentiel en pâturages) qu'il sera nécessaire de rassembler, d'analyser et de traiter si l'on veut atteindre les objectifs fixés par le présent Schéma Directeur.

Par ailleurs, les axes de reflexion sur les politiques et stratégies proposés ici devront être approfondis et détaillés dans le cadre de ce futur Plan Directeur, notamment par l'élaboration de cadres institutionnel, juridique, technique et financier traduisant concrètement et précisèment les politiques et stratégies adoptées.

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 1

INTRODUCTION

TABLE DES MATIERES

1 111 4		
1.1.	DEFINITION	
1.2.	HISTORIQUE ET JUSTIFICATION	;
1.3.	OBJECTIFS	4
1.4.	METHODOLOGIE SUIVIE	(
1.5.	EXTENSION ET LIMITES	10
1.6.	FACTEURS FAVORABLES	10
1.7.	SCHEMA DIRECTEUR ET SECTEUR EAU DANS L'ECONOMIE NATIONALE	12
BIBL	IOGRAPHIE	16
TABL	EAUX	
1.1.	Calendrier des missions et des enquêtes pour l'élaboration du Schéma Directeur et des rapports correspondants	8
1.2.	Projets du noyau dur relevant du Secteur Eau	13
1.3.	Investissements annuels du Plan dans le sous-secteur des eaux	14
1.4.	Objectisf Fondamentaux et Secondaires et leurs Axes Prioritaires d'Intervention et Domaines d'Intervention Privilégiés dans le Schéma Directeur	15
FIGU		
1.1.	Organigramme des systèmes analysés pour l'élaboration du Schéma Directeur	2
1.2.	Structure de la Banque SIGMA	5
1.3.	Activités et calendrier d'élaboration du Schéma Directeur des ressources en eau du Mali	7
1.4.	Carte de situation et liste des Arrondissements du Mali	9
1 5	Zonos à notontial homogène	11

INTRODUCTION

1

Le présent rapport a été préparé dans le cadre du Projet MLI/84/005 "Exploitation, évaluation et gestion des ressources en eau souterraine du Mali" financé par le Programme des Nations Unies pour le Développement (PNUD) et exécuté par le Département de la Coopération Technique pour le Développement (DCTD), agence d'exécution des Nations Unies, et la Direction Nationale de l'Hydraulique et de l'Energie (DNHE), agence d'exécution du Gouvernement du Mali.

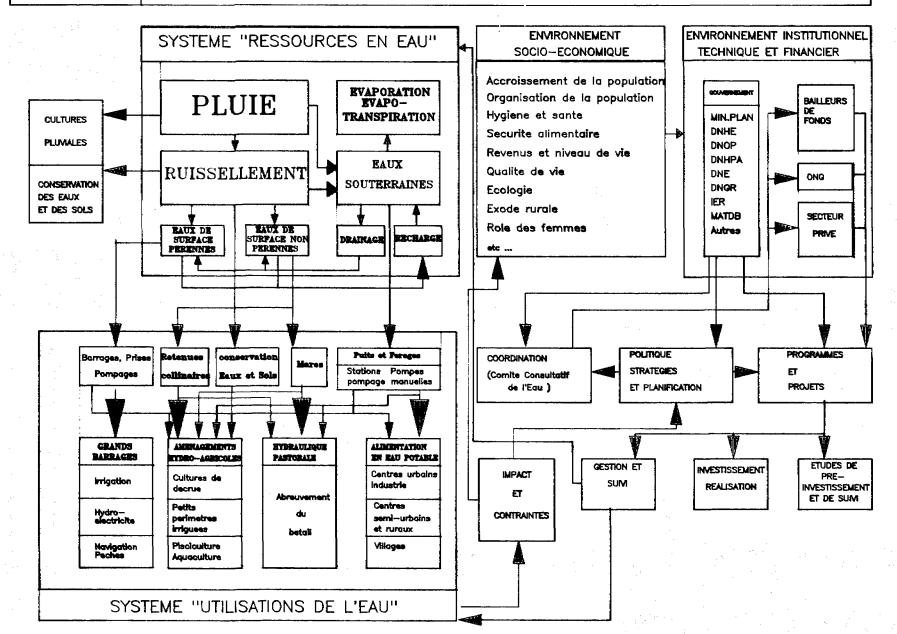
Le Schéma Directeur de mise en valeur des ressources en eau du Mali est, avec la synthèse hydrogéologique(1) et la Banque de données SIGMA(2), l'aboutissement majeur de 22 années d'assistance soutenue des Nations Unies dans le secteur de l'eau au Mali.

1.1. DEFINITION

Le Schéma Directeur de mise en valeur des ressources en eau du Mali vise à être, pour les décideurs, un instrument pratique et réaliste de planification du Secteur Eau au service du développement.

Pour contribuer à la réalisation des objectifs prioritaires du Plan National de Développement Economique et Social, le Schéma Directeur doit définir une politique nationale de l'eau qui sera conduite grâce à une stratégie d'ensemble et à des stratégies sectorielles basées sur une analyse des besoins en eau à satisfaire au moyen d'une mise en valeur des ressources en eau tout en tenant compte des contraintes techniques, financières, sociologiques et institutionnelles.

Le mot "Schéma Directeur" évoque à la fois les méthodes de planification par approche systémique mises au point depuis une trentaine d'années [1-1] et le caractère d'ébauche d'un futur Plan Directeur. On se propose d'indiquer la meilleure relation possible, pour le court et le moyen termes, entre le Système "Ressources en eau" (pluie, eau superficielle, eau souterraine) et le Système "Utilisations de l'eau" (hydrauliques urbaine, villageoise, pastorale, agricole).


La relation entre ces deux systèmes se fait par l'intermédiaire des moyens d'exploitation (pompage, stockage, retenue, dérivation, transport) du Système "Ressources en eau" pour satisfaire les besoins (évolutifs) du Système "Utilisations de l'eau". Elle ne peut se faire valablement sans y incorporer les relations de ces deux systèmes avec deux autres systèmes plus vastes: environnement institutionnel, technique et financier (administrations et bailleurs de fonds concernés par la mise en valeur du Secteur Eau, projets,...) d'une part, et l'environnement socio-économique (croissance, organisation et revenus de la population, besoins de nourriture et de santé,...), d'autre part.

L'approche systémique utilisée pour l'élaboration du Schéma Directeur est schématisée sur l'organigramme de la figure 1.1.

⁽¹⁾ La synthèse hydrogéologique du Mali sera présentée en Octobre 1990;

⁽²⁾ SIGMA: Système Informatique de Gestion des ressources en eau du MAli.

Figure 1.1 ORGANIGRAMME DES SYSTEMES ANALYSES POUR L'ELABORATION DU SCHEMA DIRECTEUR

1.2. HISTORIQUE ET JUSTIFICATION

La raison d'être du Schéma Directeur découle des études et de la mise en valeur des ressources en eau menées depuis 20 ans, qui, tout en initiant le développement, permettent aujourd'hui de préparer l'avenir en exploitant le fruit de l'expérience et de la connaissance accumulées.

Le Schéma Directeur présenté ici est, entre autres, l'aboutissement de 5 projets successifs, financés depuis 1967 par le PNUD (Annexe 3), dont les objectifs ont été d'abord la reconnaissance des eaux souterraines et la mise au point de méthodologies éprouvées pour l'implantation des ouvrages de captage ainsi que, parallèlement, la formation des cadres nationaux et le renforcement institutionnel de la DNHE.

Les sécheresses qui se sont succédées au Sahel depuis le début des années 70 et les impératifs de la Décennie Internationale de l'Eau Potable et de l'Assainissement (DIEPA) ont amené le PNUD et de nombreux autres bailleurs de fonds à participer massivement dès 1974 aux efforts du Gouvernement dans le domaine de l'hydraulique villageoise. C'est ainsi que 12.750 forages dont 8.480 productifs et 6.313 équipés ont été réalisés au 31/12/88(1), dont près d'un cinquième par les projets successifs des Nations Unies avec la DNHE, soit 2.581 forages.

Si le PNUD et le DCTD ont été les partenaires privilégiés de la DNHE, il est donc bien évident que ce Schéma Directeur n'aurait pu être élaboré sans les résultats et les données fournis par les multiples projets financés par la communauté internationale et exécutés au sein de la DNHE.

Aussi, dès 1984, le PNUD a estimé que le relais en matière d'hydraulique villageoise avait été pris par les autres bailleurs de fonds et que son assistance devait se reporter désormais sur ce qui était la suite logique de l'objectif initial : l'évaluation, la planification et la gestion des ressources en eau du Mali. C'est vers cet objectif que la phase actuelle de cette assistance (projet MLI/84/005), après avoir achevé les programmes d'hydraulique villageoise en 1987 et les reconnaissances de terrain en 1988, a concentré ses activités. La Synthèse Hydrogéologique et le Schéma Directeur en sont les résultats majeurs.

C'est au début de 1987 qu'un rapport de consultant [SDM/GNL/4] a défini les objectifs et les moyens nécessaires pour la préparation du Schéma Directeur de mise en valeur des ressources en eau du Mali.

Ce Schéma Directeur était devenu indispensable devant la prise de conscience de l'ampleur et de la complexité des tâches à accomplir pour équiper tout le pays en infrastructures hydrauliques et devant la nécessité de corriger les erreurs passées.

En effet, l'effort considérable et soutenu du Gouvernement dans le domaine de l'hydraulique, avec l'appui d'une vingtaine d'agences de coopération et de nombreuses Organisations Non Gouvernementales (ONG), a eu un impact positif certain, mais insuffisant puisqu'il n'a réussi à couvrir que 40 % des besoins dans le domaine de l'alimentation en eau potable et à ne développer qu'une partie relativement faible des potentialités d'irrigation.

⁽¹⁾ A noter qu'au 30/06/90, le fichier FORAGES de la banque de données SIGMA contient 14.930 forages.

Sous la pression de l'urgence des besoins, des priorités du Gouvernement et des préférences des bailleurs de fonds ainsi qu'à cause d'une capacité insuffisante de planification et de coordination, certains types d'activité ont été privilégiés ou bien concentrés dans certaines régions. En matière d'eau potable par exemple, la norme adoptée (40 l/j/hab.), trop optimiste, a amené un taux d'utilisation des ouvrages relativement bas car les enquêtes ont démontré que les consommations unitaires réelles sont nettement inférieures, autour de 15 à 20 l/j/hab.

Pourtant, l'effort se doit d'être poursuivi, mais pour être couronné de succès, il devra être planifié, c'est-à-dire qu'il faudra :

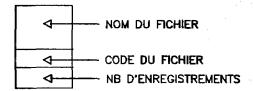
- fixer des objectifs réalistes,
- choisir des stratégies qui tiennent mieux compte des besoins réels et des souhaits des populations ainsi que de leur capacité effective de participation et de prise en charge,
- appliquer les moyens techniques et financiers adéquats à la réalisation des objectifs,
- mettre en place les moyens juridiques, institutionnels et structurels indispensables pour assurer la planification, le suivi et la coordination des actions.

C'est pour répondre à ces impératifs que le présent Schéma Directeur propose au Chapitre 8 des axes de réflexion qu'il faudra approfondir pour la préparation du futur Plan Directeur de mise en valeur des ressources en eau du Mali. Il est en effet possible aujourd'hui d'entamer une véritable planification du Secteur Eau grâce aux deux résultats majeurs du projet MLI 84/005:

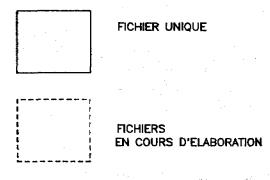
- la Synthèse Hydrogéologique qui montre les progrès sensibles réalisés dans la connaissance des aquifères, en particulier des aquifères fissurés qui couvrent 65 % du Mali peuplé et se sont révélés beaucoup plus exploitables qu'on ne le pensait en 1976 [1-3] et ouvrent ainsi des perspectives intéressantes d'exploitation tant pour les adductions d'eau des centres ruraux et des petites villes que pour la petite irrigation;
- le Système Informatique de Gestion des ressources en eau du Mali (SIGMA) qui rassemble et traite un tel capital de données quantitatives sur les ressources en eau (Figure 1.2 et Annexe 2) qu'il a permis d'obtenir une précision suffisante dans l'étude des relations entre les Systèmes "Ressources en eau" et "Utilisations de l'eau" et que l'exploitation de cette banque de données a rendu possible l'élaboration de ce Schéma Directeur.

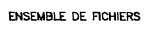
1.3. OBJECTIFS

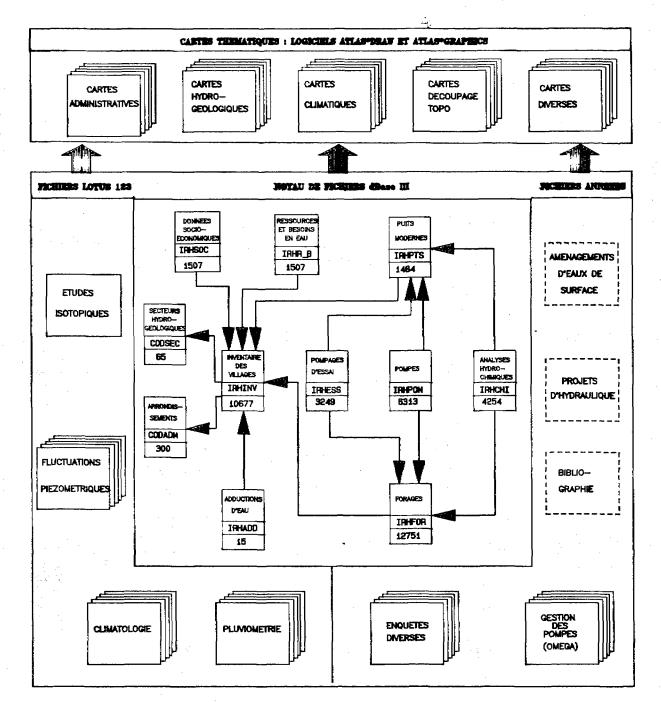
L'objectif général est de fournir aux décideurs nationaux un outil de planification dégageant des orientations cohérentes pour la mise en valeur progressive des ressources en eau afin de mieux répondre aux besoins évolutifs des populations dans les domaines de l'approvisionnement en eau, de l'abreuvement du bétail et de l'irrigation. Pour le court et le moyen termes, ces orientations sont traduites en programmes coordonnés d'investissements et en activités d'appui ou projets d'accompagnement (Chapitres 8 et 9).


En particulier, le Schéma Directeur a pour objectifs de :

- définir l'environnement institutionnel (Chapitre 2) et socio-économique (Chapitre 3),
- résumer l'état des connaissances sur les ressources en eau exploitables pour les différents usages (Chapitre 4),


Figure 1.2


STRUCTURE DE LA BANQUE SIGMA


FICHIERS DU NOYAU

AUTRES FICHIERS

ر ا

- déterminer les besoins en eau correspondant aux différentes utilisations en fonction de normes réalistes (chapitres 5, 6 et 7),
- s'assurer de l'adéquation, pour l'avenir prévisible, entre les besoins et les ressources exploitables en fonction des contraintes techniques, financières, sociales et institutionnelles,
- proposer les axes de réflexion sur la politique et les stratégies propres à assurer la mise en oeuvre du Schéma Directeur au cours des deux prochains plans quinquennaux 1992-96 et 1997-2001, son amélioration progressive, sa régionalisation et son suivi (Chapitre 8),
- déterminer les priorités et chiffrer le volume des réalisations nouvelles, des réorientations d'actions en cours et des activités d'appui à poursuivre et à entreprendre dans le cadre des deux prochains plans quinquennaux (Chapitre 9).

1.4. METHODOLOGIE SUIVIE

La méthodologie générale et le calendrier prévisionnel de préparation du Schéma Directeur ont été identifiés et adoptés en Mars 1988 et sont synthétisés sur la figure 1.3. La réalisation des activités a été schématiquement conforme aux prévisions.

Le Schéma Directeur a été élaboré, au cours de 6 missions de 2 à 5 semaines chacune entre Avril 1988 et Décembre 1989 par une équipe pluridisciplinaire de 9 consultants (Tableau 1.1) ainsi que par l'équipe du projet MLI/84/005 et en collaboration avec le Comité Consultatif de l'Eau (Chapitre 2) qui regroupe les représentants des principaux départements ministériels concernés par le Secteur Eau.

Les différents consultants ont analysé la situation actuelle, les besoins et les contraintes dans leurs domaines de compétence. Sur la base de ces analyses, des propositions sectorielles ont été présentées dans des documents de travail (Annexe 1) soumis au DCTD et au PNUD ainsi qu'aux membres du Comité Consultatif de l'Eau, pour commentaires et corrections.

Sur cette base, un rapport provisoire a été élaboré dont 180 exemplaires ont été diffusés auprès des différentes instances gouvernementales, des bailleurs de fonds, des ONG, du secteur privé. Une Conférence Nationale sur le Secteur Eau a ensuite été organisée fin Juin 1990 par le Ministère de l'Industrie, de l'Hydraulique et de l'Energie afin de commenter et discuter le rapport provisoire. La Conférence a conclu à l'adoption du Schéma Directeur et recommandé un certain nombre de corrections et d'additifs (Annexe 7) qui ont été pris en compte dans la version finale du Schéma Directeur présentée ici.

L'illustration du rapport est en grande partie constituée par des sorties d'ordinateur à partir du traitement des fichiers de la banque de données SIGMA. Pour la plupart des figures, l'unité géographique de base représentée est l'Arrondissement. Selon les cas et le type de données, l'unité de base peut être le Cercle ou le secteur hydrogéologique. Cette subdivision par Arrondissement constitue un élément très utile dans l'optique d'une future planification régionale. Il est à noter que les Arrondissements du Nord et du Nord-Est, en zone désertique, ne sont pas figurés, car le plus souvent dépourvus de données en nombre suffisant, la représentation cartographique de leurs résultats statistiques aurait donné une fausse image de la réalité physique. La figure 1.4 montre la répartition des Arrondissements avec la liste de leur nom et de leur code dans SIGMA.

	1988	1989	1990			
ACTIVITES	N A N J Jt A S O N D	J P N A N J Jt A S O N D	J P N A N J Jt A S			
1 - BANQUE DE DONNERS SIGNA						
1.1. Notice d'utilisation et actualisation						
1.2. Constitution des fichiers informatiques a - Forages b - Pompes c - Pompages d'emmai						
 d - Puits e - Inventaires et enquêtes villageoises f - Hydrochimie - Isotopes g - Piézométrie/Pluies journalières h - Pluviométrie/Climatologie i - Adduction d'eau j - Hydrologie et petits aménagements de surface k - Projets d'hydraulique l - Bibliographie 						
1.3. Edition d'annuaire et d'atlas						
1.4. Actualisation fichiers						
1.5. OMEGA (Garage, puis pièces de pompes)						
2 - SYNTHESE HYDROGEOLOGIQUE	·					
2.1. Géamétrie des systèmes acquilères						
2.2. Paramètres hydrodynamiques						
2.3. Paramètres hydrochimiques						
A.4. Bilan des aquifères			-			
2.5. Modélisation des aquifères						
2.5. Rapports techniques 2.7. Synthèse						
3 - BAUI DE SURFACE PERBNNES						
a - Définition et délimitation unités hydrologiques b - Collecte et analyse données c - Evaluation sommaire des ressources						
4 - SCHENA DIRECTEUR						
5.1. Identification et définition						
5.2. Utilimation actuelle des ressources en eau						
5.3. Evaluation des besoins						
5.4. Bvaluation des ressources exploitables						
5.5. Evaluation des contraintes						
5.6. Adéquation Ressources exploitables/Besoins						
5.7. Rapport du Schéma Directeur a - Préparation et diffusion version provisoire b - Conférence Nationale sur le Secteur Bau						

Figure 1.3 - ACTIVITES ET CALENDRIER D'ELABORATION DU SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Tableau 1.1 - Calendrier des missions et des enquêtes pour l'élaboration du Schéma Directeur et des rapports correspondants

Dates missions	15	88		i .			
Nerge minelous	3-23/04	10-30/11	30/3-13/5	27/7-23/8	5/10-15/11	16/11-17/12	,
Objectifs	Identifica- tion	Situation actuelle	Bescins Contraintes	Adéquation Res/Bes	Propositions de projets	Réd. Schéma Directeur	Totaux
CONSULTANTS		No	mbre de	Semaines/hom	16		
Hydrogéologue, chef de mission Hydrologue Ingénieurs Génie Rural (2) Ingénieur Sanitaire Agro-pastoraliste Sociologues (2) Agro-économiste	3 - - - -	3 - 3 - - 3	5 3 3 3 2 4 7	3 1 - 3 3 3 3	2 4 3 - 1	4} - - - - - 4	21 7. 9 51 4 11 101
Totaux (h/s)	3	9	241	121	10	9	68
Dates réunions Comité Consultatif	de l'Eau		2 et 27/5	24/7 et 15/8	14/10-30/10		6
Enquêtes (dates) . Moyens d'exhaure . Consommation fruits et légumes . Mesures hydrométriques			24/4 Juin Juin - Oc				
Numéros des Rapports (Annexe 1) . SDM/GNL . SDM/BNP . SDM/ABP . SDM/HPL . SDM/IRG . SDM/BCO . SDM/SOC	5 - - -	6 1 2 -	10 2 et 3 4 1 1 -	11 - 6 - - 2 4	12 4 6 - - 5	•	5 4 4 1 1 2 5
Nombre total de rapports et docume	ents de travai	l élaborés p	ar les consul	tants		:	22

Fig	ure	1.	4
-----	-----	----	---

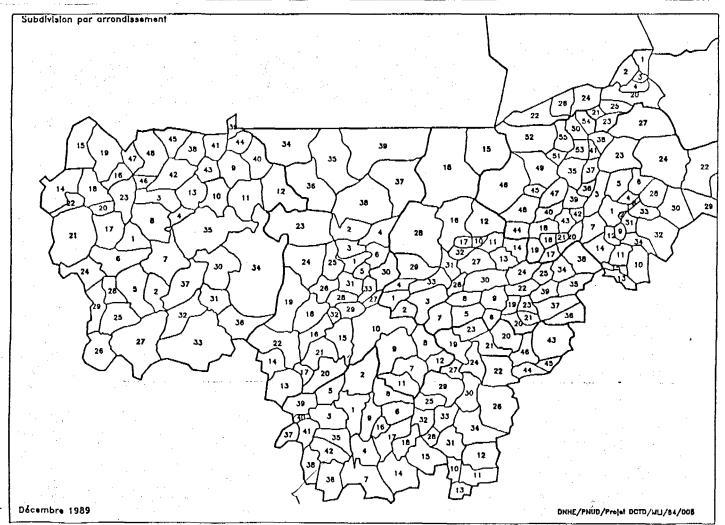
CARTE DE SITUATION ET LISTE DES ARRONDISSEMENTS DU MALI

Les numéros des Arrondissements portés sur la carte de localisation sont repris dans le tableau, Région par Région, dans l'ordre numérique.

Exemple:

Le n° 12 de la Région 3 sur la Carte correspond au code suivant :

3 <u>RD LO</u>


Arrdt = Loulouni

Cercle = Kadiolo

Région = Sikasso

Remarque: la Région 7 et une grande partie de la Région 6 ne figurent pas sur la carte pour les raisons indiquées dans le rapport. Par contre tous les Arrondissements correspondants ont été codifiés pour la banque SIGNA dans laquelle les données y relatives ont été sai les.

	٠,			,					_		
1.EATES		2. TOULITORO		\$4-SAMSO		TA-TANGASSO	•	EN-10NIO	11	RM-RAZ-EL-MA	10
BF-BAFOULABE	-	BA-BARAKBA		27-ZANTEBOUGOU	,	MA-MACINA		to-tobatourou -	18	TI-LENBRA	11.
BP-BAPOULABE	ıl	BA-BAMANBA	i	ID-EXDIOLO		EO-LOLONGO	14	NO-NOUGHA	15	TO-TONEA	12
BH-BAHAPEGE	,	BD-BORON	2		10		. 11		10	GR-GOURNA-REAROUS	
DE-DIAEON	3	HS-HADINA-SACEO	i		ii	NO-NOMINAPEROUGOU	12		21	BR-PARBARY-RAGUGE	13
DC-DIALLAN	1	SE-SEBETE			12		13	D2-DOURNTZA	•	G 0-G0\$\$[16
KO-KOUNDIAN	i)	TB-TOUBAEOURA	j	MI-MISSAMI	11		и	BN-BONI	22	GE-COURKA REARDUS	
MA-HABINA	ï	TE-TOUROROBA	i	KF-KOCONDIBBY	•••	EN-BIONO	••	BR-BORK	23	EA-HARIBONO	16
OL-OUALIA	,	PT10104-10	•	FA-FALOLA	14		15	DZ-DOUENTZA	21	1M-1MADIATAFANS	17
ANAIGIBUORRUO-RO	d	BA-BANCO	1		15	DY-NIONO	16	BO-BONBORE	25	RY-RODIVEOLE	l é
DA-DIRMY	ľ	BR-BRLBEO-SEBA	1	IB-IEBILA	16		17	MO-NONDORO	26	OU-DUINEADEN	17
BR-BRNA	,	DI-DIOILA	į		17		18	NG-N'GOUNA	27	BY-MIAPUNES	- "
DC-DIANGOUTE CANARA		PA-PANA	10		18	SA-SAN	• •	ER-EORO		BA-BANE KANE	20
	ii	MA-MASSIGUE	n		•••	17210-10	19	DOGAZKA16-AG	28	SO-EDUBALRA	21
	iż	NE-RENY	iz		19		ŽŰ	ON-DENANGOUROS /	25	LE-CERE	221
	13	EA-RANGABA		EO-EOUNIANA	20	EI-EIMPARAHA	21	DO-DIQUEGANI	30	NG-AGORKOU	23
IA-1418\$	``	EG-EANGABA	13		11	SA-SAN	22	10-10POROLENIENA	31	MI-XITEONES	24
	u	MR-MARRMA	14		12	SO-SOUROUNTOUNA	23	ER-LORO	12	SA-SARAPERB	25
	15	II-IATI	• •	MP-M*PESSOBA	23	SY-SY	21	KA-HABOUGOU	33	SO-SOUNPI	26
	i 6	BC-BAGGINEDA	15		24	TE-TENE	25	TO-TOROLI	34	TB-TOKBOUCTOD	
	17	EA-EALABANCORO	16			SE-SEGOU	-7	MO-MOPTI	• •	AG-AGLAL	27
	18	TO-LOUROUBA	11		25	CI-CINZAWA	26	DI-DIALLOUBS	35	BE-BEL	28
	isl	IT-IATI	18	DA-DANDERESSO	26	DI-DIORO	27	FA-FATORA	35	BI-BOUREM-IMALY	29
	20	NE-NEGUELA	19	DO-DOGONI	21	DO-DOULA	28	KO-KONA	37	TI-TINAGUEL BAJ	30
	21	OU-OURLESSEROUGOU	10	FI-FINEORO	28	FA-FARATO	29	IR-IORIENZE	38	TO-TORBOUCTOD	31
	22	SA-SANANEGROBA	21		29	KA-KATIBNA	30	MO-MOPTI	39		٠.
	23	SI-S[87	22		30	MA-HARRALA	11	Idom onuo-uo	40	TH-THRONGO	
IN-TENTEDA	``[EO-LOLOCANI	•••	LO-LOBOUGOULA	31	SA-SANSANDING	32	SB-SENDEGUE	- ül	AN-ANSONGO	- 1
	21	JUBICIC-1C	23	MT-MIBNY	32	SK-SEGOU	13	SF-SOUPOUROULATE	42	OU-GUATAGOUNA	- ;
	25	IO-IOLOGARI	24	NI-WEOURALA	33	TO-TONINIAN		80-8018	43	TA-TALATAYE	- 1
PA-PALBA 2	26	MA-MASSANTOLA	25	SI-SIEASSO	14	FA-FANGASSO	34	TR-TENELOU	- 1	TS-TESSET	- 11
PR-FARABA Z	27	NO-MONSSON BOUGOS	26	YA-YARFOLILA		EO-EOULA	35	DF-DEAFARABE	44	BR-BOURGE	- 1
	28	EU-EOULIEORO	-	ANA I DUOS 2 U O O O O	35	NA-MAFOUNB	36	DI-DIONOIORI	45	AL-ALMOUSTARAT	3
	29	KE-RENKKOU	21	PI-FILAMANA	36	FULLIDHAR-18	31	ARROJG-00	45	BR-SARBA	i
11-1174	``	EL-KOULA	28	GU-GUBLELINKORO	37	TI-TIMISSAN	38	SA-SOSSOBE	47	BR-BOUREN	,
DJ-DJEDIAN 3	30 l	EU-EOULTEORO	19	EA-EALANA	38	TO-TOBINIAN	33	TR-TEMENTOU	48	TH-TEMBEA	
	11	ME-MINKINY	30	EN-LANCARE	39	5.MOPTI		TO-TOGUERECOUNDE	(9)	GA-GAO	
	12	SI-SIRAFOROLA	31	SI-SIETOROLE	40	BG-BANDLAGARA		TU-TOUNAROU	- '	DJ-DJEBOCK	9
	3	TI-TISMFALA	32		- 11	BG-BAND[AGARA	- il	AM-ABBIRI	50	GA-GAO	10
	id	TO-TOUGOUNI	11	TO-TOROBOUGOULA	12	DO-DOURGU	i	DO-DOGO	51	BE-HACUSA-FOULANE	-11
	15	PA-TARA		70-7020550	- "]	GO-GOUNDAKA	3	GL-GATHI LOUNG	52	IT-IN-TILLIT	ΙZ
	16	BA-BALLE	34	BO-BOURA	43	ARUGUGO-INAL-AL	- il	GA-CA1010	53	ED-EIDAL	
	17	DI-DILLY	35	IO-IODEI	44	ER-TENDIR	- 5	SA-SAN	54	AG-AGUELBOL	13
MI-MIORO	1	PA-FALOU	16	RY-MVHOA	(5	ME-MINGARI	Ġ	TU-TOUWAROU	55	BO-BOURRISSA	-14
	ı	CA-CATER	17	TO-TORUSSO	46	00-000	- 1	6.TONBODCTOU		EB-LIDAL	15
	,,	MO-MORDIAN		4.SECOU	- '']	SA-SANGHA		DA-DIRE]	TR-TENETRINE	16
	ol.	XA-NARA	39	BA-BARAOUELT	ı	BS-BANLASS	Ĭ,	DA-DANJA	1	TI-TESSALIT	17
	il.		"	BR-BARAOUELT	- 1	BS-BANIASS	,	DR-DIRE	2	TL-TIN-ESSAUD	18
	2	BO-BOUGOUNE	- 1	TO-LONOBOUGOU		BT-BATE	10	BA-HALBONGO	31	TZ-TINZAVATENE	19
	3	BO-BOUGOUNI	1	SA-SANANDO	3	DI-DIALLASSAGOU	iil	SA-SAREYANOU	ان	MI-MENATA	- ' '
	,	00-0000	į	TA-TAHALI	- 11	EB-EAHI-BONZON	izl	CD-COUNDAR	ľ	TO-VADEEVRBORETAR	29
TE-TELINANE	"	FA-FARAGOUARAN	;	BL-BLA	'[OD-OVEREORO	iil	BI-BINTAGOUNGOU	- 5	IN-INCLAR	21
	5	GA-GARALO	از	BL-BLA	d	SE-SEGUE	iil	DO-DOURT [#B	6	MI-RENYTA	22
	6	EL-IELETA	7	DI-DIABANANA	d	SD-SOLOURA	151	FA-FARACH	71	TO-TIDARMENE	231
	,	EN-EOUNANTOU	:1	FA-FALO	;	D1-D18HNE	"]	GA-GARGANDO	ا	. P. TINGBURE	•"]
	*	NA-MANANEORO	;	TO-TOUNA	- ;1	DI-DIENNE	16	GD-GOUNDAM	,1		Ì
10 10010AM6 , 1	°I	HA-GARAPBVWV				A1.01040]
	_										_

1.5. EXTENSION ET LIMITES

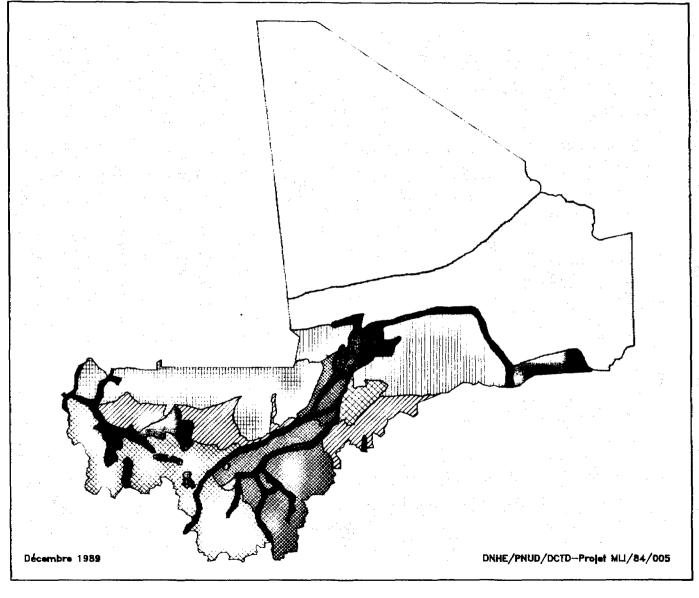
C'est au cours de la réunion tripartite de Mars 88 qu'il a été décidé d'adjoindre à l'étude de la mise en valeur des eaux souterraines, celle des eaux de surface en raison non seulement de leurs relations étroites avec les eaux souterraines, mais aussi de l'important potentiel qu'elles représentent pour le développement économique des zones rurales [1-4] et l'alimentation en eau potable des grandes villes, malgré le fait que la connaissance des ressources en eau de surface non pérenne soit encore embryonnaire [SDM/ENP/2] et basée sur des modèles théoriques.

Le Schéma Directeur couvre une période de programmation de 10 ans correspondant à la durée des deux prochains plans quinquennaux 1992-1996 et 1997-2001. L'incertitude sur les évolutions prévisibles au-delà de l'an 2000 a fait craindre que le Schéma Directeur perde de son réalisme; on indiquera cependant, chaque fois que ce sera possible, dans quel sens pourraient évoluer qualitativement les besoins en eau et les moyens de les satisfaire jusqu'au début du prochain siècle.

Pour des raisons de temps et de moyens, le Schéma Directeur a été limité au niveau national. Cependant, chaque fois que possible, on a relié certaines caractéristiques étudiées et certaines propositions aux zones homogènes de planification du Mali (Figure 1.5).

Le Schéma Directeur a été élaboré principalement à partir de documents de dates variables et de valeur inégale; en outre, on ne peut assurer qu'aucun document n'ait échappéà l'analyse, notamment en ce qui concerne les aménagements hydro-agricoles sur les eaux de surface [SDM/ENP/4].

Les statistiques disponibles sur la population, le bétail et les superficies irriguées sont à considérer avec prudence, de même donc que les projections qui sont faites à partir d'elles bien qu'on ait toujours essayé de rester cohérent et réaliste dans la présentation des ordres de grandeur.


1.6. FACTEURS FAVORABLES

Malgré les limitations indiquées ci-dessus, le contenu du Schéma Directeur a pu être amélioré grâce à un certain nombre de facteurs favorables.

Le projet MLI 84/005 a ainsi pu réaliser des enquêtes pour préciser certains chiffres ou obtenir des ordres de grandeur notamment en ce qui concerne :

- les écoulements non pérennes, en effectuant des observations hydrologiques sur 6 petits bassins versants dans les zones sahélienne et sahélo-soudanienne durant l'hivernage 1989 [SDM/ENP/4],
- les aspects liés aux moyens d'exhaure en milieu rural, en réalisant une enquête très approfondie sur 439 pompes dans 230 villages et centres ruraux des 2ème, 4ème et 5ème Régions [SDM/SOC/1 à 5], complètant d'autres enquêtes menées auparavant, notamment celle de Mali Aqua Viva dans la région de San.
- la consommation et la vente des fruits et légumes, en réalisant une enquête à Bamako en vue de déterminer un premier seuil de la contrainte "Commercialisation des produits" des futurs petits périmètre irrigués villageois (Chapitre 7).

ZONES DESERTIQUES NOMADISME TRANSHUMANCE TRANSHUMANCE ET CULT. DISPERSEES BOURGOUTIERES TRANSHUMANCE ET ELEV. SEDENTAIRE idem + CULTURES DISPERSEES ELEV.SEDENTAIRE+CULT. DISPERSEES ELEV.SEDENTAIRE+CULT. CONTINUES VALLEES FLUMALES ET LACS FORETS

SIGMA: MUPOTR

FIGURE 1.5

ZONES A POTENTIEL HOMOGENE (d'après le Ministère du Pian)

Mais cest surtout la qualité de la Banque de données et de son logiciel de gestion SIGMA, élaborés par le projet MLI 84/005, qui a permis de traiter rapidement un nombre considérable de données et de les régionaliser par Arrondissement, Cercle et Région ou bien par unités et secteurs hydrogéologiques. Ces traitements statistiques (Annexe 5) ont ainsi abouti à :

- estimer l'évolution de la population, (selon la taille des localités), du bétail et de leurs besoins en eau,
- analyser statistiquement les caractéristiques des forages, des pompes, des pompages d'essai et des analyses chimiques et isotopiques,
- estimer les taux de couverture des besoins en eau des populations,
- calculer le coût de l'eau souterraine,
- présenter les nombreux tableaux et cartes synthétiques qui illustrent ce rapport.

La banque SIGMA est un instrument performant pour l'analyse des Systèmes "Ressources en eau" et "Utilisations de l'eau", mais elle devra être alimentée et complétée au fur et à mesure par des données nouvelles dont la collecte, l'acquisition et l'archivage doivent rester la priorité absolue de la Direction Nationale de l'Hydraulique et de l'Energie avec l'aide du Comité Consultatif de l'Eau.

1.7. SCHEMA DIRECTEUR ET SECTEUR EAU DANS L'ECONOMIE NATIONALE

1.7.1. Extension sectorielle du Schéma Directeur

Le champ sectoriel couvert par le Schéma Directeur relève de plusieurs secteurs et sous-secteurs de l'économie nationale tels que définis dans la classification adoptée dans le Plan quinquennal de développement économique et social 1987-1991 [1-6]. Ainsi les secteurs et sous-secteurs directement couverts par le Schéma Directeur sont :

- a) dans le secteur de l'économie rurale ou secteur primaire :
 - * le sous-secteur de l'agriculture,
 - * le sous-secteur de l'élevage,
- b) dans le secteur secondaire:
- * le sous-secteur des eaux.

Sont en outre concernés, mais en moindre importance, le sous-secteur de la santé et des affaires sociales, le secteur des ressources humaines et, dans certains cas, le sous-secteur des pêches (secteur de l'économie rurale) dans la mesure où sont mises en oeuvre des réalisations piscicoles à partir des eaux de surface.

Cet ensemble sera désigné dans la suite, pour plus de commodité, sous l'appellation générale de "Secteur Eau" (à ne pas confondre avec le sous-secteur des eaux qui n'en est qu'une partie).

1.7.2. Dispositions du Plan 1987-1991

Le premier programme d'investissements du Plan (Mai 1988) [1-6] établit une programmation pour la période 1987-1991 avec une répartition des projets en deux catégories :

- a) noyau dur : il est composé de projets en cours ou dont le financement est acquis pour la période 1987-1990, ce qui permet de déterminer la place du Schéma Directeur dans Plan quinquennal (Tableaux 1.2 et 1.3)
- b) réserve de projets : elle est composée de projets à divers stades d'étude ou d'avancement vers l'obtention d'un financement, mais le volume correspondant au Schéma Directeur ne peut en être extrait car les investissements ne sont pas tous quantifiés.

Tableau 1.2. - Projets du noyau dur relevant du Secteur Eau

	Investi 198 (en million	Pourcentage des		
	relevant du Schéma Directeur	de l'ensemble du secteur correspondant	relevant du Schéma Directeur	
- Secteur primaire : - Secteur secondaire :	31.050 42.333	90.547 73.471	34,2 % 57,6 %	
- Ensemble Secteurs primaire et secondaire	73.383	164.018	44,7 %	
- Ensemble des Secteurs	73.383	302.955	24,2 %	

On constate donc que près d'un quart des investissements du noyau dur relève du Secteur Eau. On peut admettre que cette proportion est du même ordre pour l'ensemble des investissements prévus au Plan (noyau dur et réserve de projets) bien qu'une analyse semblable ne soit pas possible pour la réserve de projets puisque les investissements correspondants ne sont pas tous quantifiés.

Dans le secteur primaire, le pourcentage des investissements concernant le Schéma Directeur (34,2 %) est à considérer avec prudence, car les projets de ce secteur intéressent presque tous le Secteur Eau mais il est difficile d'y distinguer la part exacte concernant strictement les aménagements hydrauliques.

En ce qui concerne le secteur secondaire, la programmation annuelle 1987-1991 de l'ensemble des financements prévus (noyau dur+réserve de projets chiffrée) montre une baisse de la part du Sous-secteur des Eaux entre 1987 et 1991 alors que sur l'ensemble des secteurs, les investissements augmentent (Tableau 1.3).

Tableau 1.3 - Investissements annuels du Plan dans le Sous-secteur des Eaux (en millions de F.CFA)

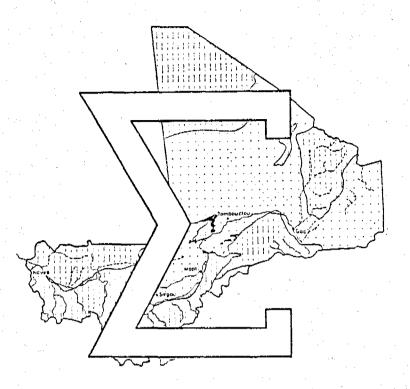
Plan 1987-1991	TOTAL 1987-91	1987	1988	1989	1990	1991
Sous-secteur des Eaux	102.600	18.848	13.457	17.494	22.742	30.059
Secteur secondaire	171.000	27.550	21.343	28.782	39.065	54.260
Sous-secteur Eaux/ Secteur secondaire	60,0%	68,4%	63,4%	60,8%	58,2%	55,4%
Ensemble des secteurs	570.000	94.083	100.274	110.409	126.452	138.782
Sous-secteur Eaux/ Ensemble des secteurs	18,0%	20,0%	13,4%	15,8%	18,0%	21,7%

En termes qualitatifs, le Plan [1-6] indique que le Secteur Eau est appelé à répondre directement à l'Objectif Fondamental n° 2"Lutter contre la sécheresse et la désertification" et participer à l'Objectif Fondamental n° 1 "Atteindre l'autosuffisance et la sécurité alimentaires".

Enfin, parmi les trois objectifs stratégiques complémentaires cités par le Plan, le Secteur Eau doit permettre de "couvrir les besoins de base des populations", notamment en ce qui concerne "la couverture des besoins en eau, la politique de maîtrise de l'eau demeurant un axe prioritaire pour sécuriser les conditions de vie et de production du monde rural et pour étendre les réseaux hydrauliques semi-urbains et urbains".

Sur la base de ces objectifs stratégiques fondamentaux et complémentaires, le Plan définit les Axes Prioritaires d'Intervention (API) et leurs Domaines d'Intervention Privilégiés (DIP). Le Secteur Eau et le Schéma Directeur sont donc concernés à divers degrés par plusieurs de ces API et DIP tels que montrés dans le tableau synoptique 1.4. ci-après.

Le Schéma Directeur prend en compte ces différents domaines d'action dans les propositions présentées aux Chapitres 8 et 9.


Tableau 1.4 - Objectifs Fondamentaux (OF) et Secondaires (OS) et leurs Axes Prioritaires d'Intervention (API) et Domaines d'Intervention Privilégiés (DIP) classés par ordre d'importance dans le Schéma Directeur

OF/OS	API	DIP
	8. Agir sur le système hydraulique	8.1. Maîtrise des eaux de surface: retenues et petits barrages
OF2		8.2. Surcreusement de mares
OFZ	en e	8.3. Aménagement des plaines et des cuvettes
		8.4. Rationalisation de l'utilisation de l'eau (réglementation, tarification, etc)
	10. Elargir l'accès à l'eau potable	10.1. Exploitation des eaux souterraines et développement des moyens d'exhaure
051		10.2. Renforcement des réseaux hydrauliques urbains et semi-urbains
		10.3. Contrôle de la qualité bactériologique et des paramètres physico-chimiques
	1. Intensifier la pro- duction agricole	1.7. Amélioration des techniques de production agricole
ont	2. Intensifier la production animale	2.4. Rationalisation du maillage hydraulique pour éviter le surpâturage
OF1	3. Intensifier la pro- duction halieutique	3.1. Aménagement des plans d'eau
	4. Aider à l'organisa- tion de l'économie rurale	4.6. Sensibilisation et mobilisation du monde rural
	5. Lutter contre la dé- gradation des systè- mes écologiques	1
OF2	6. Restaurer les systè- mes écologiques	
	 Gérer et développer le potentiel énergé- tique 	7.2. Encouragement à l'utilisation de l'énergie éolienne et solaire
OS2	16. Développer les activités créatrices d'emplois	16.2. Encouragement des activités à haute intensité de main d'oeuvre (HIMO)

CHAPITRE 1

Références bibliographiques hors projet

- [1-1] Design of water ressources systems Cambridge Harvard University Press-1962.
- [1-2] Rapport du 3ème Atelier National de la DIEPA sur la planification du secteur eau potable et assainissement Bamako, 6 8 Décembre 1988.
- [1-3] Carte de planification des ressources en eau souterraine de l'Afrique Soudanosahélienne dans les Etats membres du CIEH - 1976.
- [1-4] Plan d'action pour l'aménagement de petites retenues d'eau villageoises R. BOUCHARDEAU Projet MLI/82/002 "Assistance à la planification" Mars 1985.
- [1-5] Options et investissements prioritaires dans le domaine de l'irrigation SCET-Agri/GERSAR PNUD/BIRD/FAC Juin 1985.
- [1-6] Ministère du Plan: plan quinquennal de développement économique et social 1987-1991 (3 Volumes) 1988.

SCHEMA DIRECTEUR

DE MISE EN VALEUR DES RESSOURCES EN EAU

DU MALI

CHAPITRE 2

CADRE INSTITUTIONNEL, LEGISLATIF ET FINANCIER

TABLE DES MATIERES

TEXTE

2.1.	INSTITUTIONS GOUVERNEMENTALES	1
	2.1.1. Ministère de l'Industrie, de l'Hydraulique et de l'Energie.	1
. 4	2.1.2. Ministère de la Santé Publique et des Affaires Sociales	5
	2.1.3. Ministère de l'Agriculture	5
	2.1.4. Ministère de l'Elevage et de l'Environnement	5
	2.1.5. Ministère de l'Administration Territoriale	5
	et du Développement à la Base	5 6
	2.1.7. Ministère des Travaux Publics, de l'Urbanisme	U
	et de la Construction	6
	2.1.8. Ministère des Finances et du Commerce	6
1.5	2.1.9. Coordination intersectorielle	6
	2.1.5. Cooldination intersectoricite	•
2.2.	AUTRES INTERVENANTS DU SECTEUR	7
2.3.	CADRE LEGISLATIF DU SECTEUR EAU 1	1
2.4.	DIFFICULTES ET CONTRAINTES	1
4.7.	2.4.1. Sur le plan institutionnel et structurel	
	2.4.2. Sur le plan législatif	
	2.4.3. Sur le plan financier	
2.5.	CONCLUSION 1	3
BIBL	OGRAPHIE 1	. 4
TABL.	AU.	
2.1.	Projets d'hydraulique souterraine financés pour la période 1987-1991. I	.0
FIGUI	${m ES}$	
2.1.	Institutions gouvernementales du Secteur Eau et leurs relations avec le Schéma Directeur	2
2.2.	Infrastructures régionales de la DNHE et la DNOP	4
2.3.	Zones d'intervention des principaux bailleurs de fonds dans le Secteur Hydraulique Souterraine (1987-1991)	8
2.4.	Objectif et financement des projets d'hydraulique souterraine (1987-91)	9

CHAPITRE

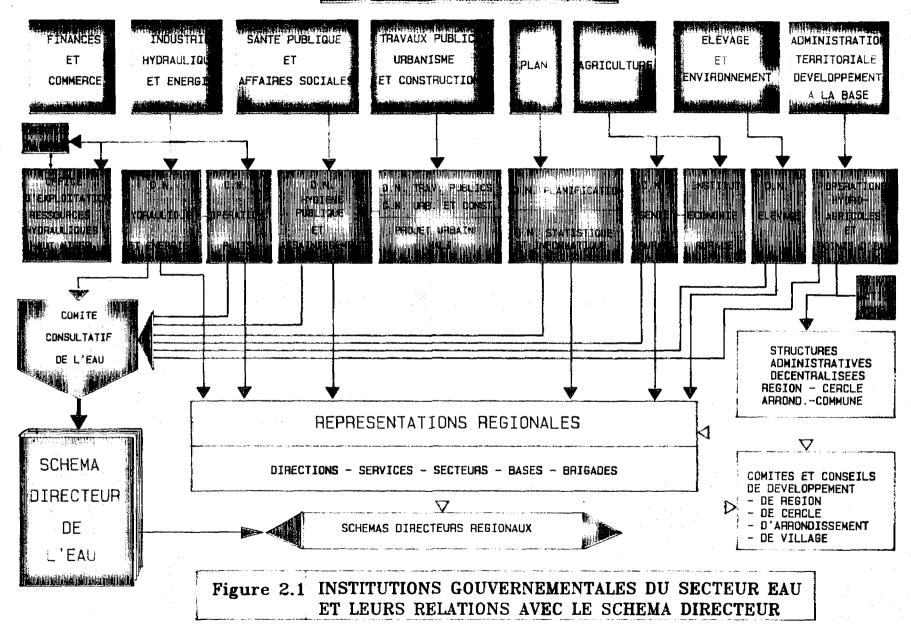
CADRE INSTITUTIONNEL, LEGISLATIF ET FINANCIER

2

La mise en oeuvre du Schéma Directeur sera avant tout la responsabilité du Gouvernement du Mali ainsi que de ses Institutions spécialisées concernées, à divers degrés, par le Secteur Eau.

Cette mise en oeuvre nécessitera des apports financiers importants (Chapitre 9) et un appui technique soutenu que le Gouvernement ne pourra assumer qu'avec le concours financier des bailleurs de fonds, et notamment de ceux qui interviennent déjà dans le Secteur, ainsi qu'avec le renfort de l'assistance technique externe dans le cadre d'organismes internationaux, bilatéraux ou non gouvernementaux. De même, le secteur privé aura un rôle à jouer plus important qu'aujourd'hui par l'intermédiaire des opérateurs économiques nationaux intéressés.

L'objet du chapitre 2 est de donner un aperçu sur les institutions et organismes intervenant dans le Secteur Eau, leur place et rôle respectifs, leurs attributions et responsabilités principales et leurs moyens d'action ainsi que sur les difficultés et contraintes auxquelles ils sont actuellement confrontés.


2.1. INSTITUTIONS GOUVERNEMENTALES

Huit Départements ministériels [2-1] interviennent dans le Secteur Eau (Figure 2.1) et coordonnent leurs actions au niveau d'une cellule intersectorielle.

2.1.1. Ministère de l'Industrie, de l'Hydraulique et de l'Energie (MIHE)

C'est à ce ministère que le Gouvernement a confié la plus grande partie des responsabilités en matière d'hydraulique. Il met en oeuvre ses attributions par le canal de sa Direction Nationale de l'Hydraulique et de l'Energie (DNHE) qui est chargée d'élaborer les éléments de la politique en matière d'hydraulique et de l'Energie, et notamment de :

- a) dresser l'inventaire des ressources en eau du pays et, pour cela, effectuer toutes les études, prospections et reconnaissances nécessaires,
- b) réaliser le suivi et le contrôle de l'utilisation et de l'exploitation des ressources en eau de surface et souterraine, notamment en matière d'eau potable et d'assainissement, d'aménagements de cours d'eau et de lacs pour l'agriculture, la pêche, l'élevage, la navigation, l'énergie hydro-électrique, la lutte contre l'érosion, la sécheresse et la désertification,
- c) assurer la gestion des ressources en eau et, pour ce faire, définir les politiques, stratégies, normes et programmes en coordination avec les autres intervenants du Secteur.

Les structures et attributions de la DNHE telles que définies en 1966 [2-2] ont sensiblement évolué pour s'adapter au développement spectaculaire du Secteur Eau au cours de ces dix dernières années. C'est pourquoi, de nouvelles dispositions institutionnelles ont été récemment proposées [2-3 et SDM/GNL/3] et approuvées par le Gouvernement.

La DNHE dispose d'importants moyens d'action au niveau de la capitale, mais également à l'intérieur du pays où des bases régionales ont été créées essentiellement dans le cadre de projets d'hydraulique villageoise: Kita, Kobalakoro (Baguineda), Bamako, Bougouni, Sikasso, Ségou, San et Gao où opèrent des ateliers de forages (14 au total), des équipes de géophysique(4), des équipes de pompages d'essai(4) et des équipes d'animation et de sensibilisation(8).

Outre celles existant dans ces bases, des brigades d'entretien des pompes manuelles^(*) ont été installées ou sont en cours d'installation à Nioro, Nara-Dilly, Diéma, Kolokani, Banamba, Niono, Barouéli, Dioila, Mopti-Sévaré et Tombouctou (Figure 2.2).

En ce qui concerne le suivi des ressources en eau, la DNHE contrôle les grands fleuves par un réseau de 85 stations de mesures hydrologiques (dont 21 plateformes automatiques) gérées à partir de 5 grigades et les principaux aquifères par un réseau de 220 piézomètres suivis par des observateurs locaux ou des appareils enregistreurs et controlés mensuellement (Chapitre 4).

Grâce à ses moyens d'action et à ses cadres et techniciens, la DNHE exécute ellemême les études hydrologiques et hydrogéologiques de base ainsi que des études de conception de systèmes d'eau potable des centres urbains et semi-urbains et de petits barrages. Elle exécute par ailleurs, grâce à ses ateliers de forage, près de la moitié des forages d'hydraulique villageoise, le reste étant réalisé, sous son contrôle, par des entreprises privées dans le cadre de projets à financement externe (17 projets en exécution en 1989). Il est ainsi construit par la DNHE et les projets un total de 1300 forages productifs par an en moyenne dont près de 90 % équipés de pompes manuelles [2-4].

Outre la DNHE, le ministère chargé de l'Industrie, de l'Hydraulique et de l'Energie a également sous sa tutelle trois autres unités spécialisées :

- la Direction Nationale de l'Opération Puits (DNOP): chargée plus spécifiquement d'équiper le pays en puits modernes de grand diamètre, elle dispose d'importants moyens d'action par le biais de 6 Directions régionales subdivisées en 21 Secteurs dans lesquels opèrent près de 70 brigades de puisatiers qui réalisent, en moyenne, une centaine de puits modernes par an (Figure 2.2);
- l'Energie du Mali (EDM), société d'économie mixte concessionnaire depuis 1961 de la production, du transport et de la distribution de l'énergie électrique et de l'eau potable: par l'intermédiaire de son Service des Eaux, l'EDM est plus spécialement chargée des systèmes d'adduction d'eau de la capitale et des principales villes du Mali, l'alimentation en eau des autres villes et localités étant sous la responsabilité de la DNHE;
- l'Office d'Exploitation des Ressources Hydrauliques du Haut Niger (OERHN): il gère essentiellement, tout en tenant compte des besoins de l'EDM, l'utilisation des eaux retenues par le barrage de Sélingué sur la rivière Sankarani, affluent du fleuve Niger.

^(*) A noter l'existence de la Société EMAMA (Entreprise Malienne de Maintenance) qui fabrique et commercialise la pompe INDIA Mark II au Mali (Sikasso).

SCHEMA-DIRECTEUR DES RESSOURCES EN EAU DU MALI

LEGENDE

- ☐ Brigade hydrologique _DNHE
- ★ Base forage _DNHE
- O Base pompe _DNHE
- Secteur de la DNOP

SEGOU Chef-lieu de Region

Limite de Région

Limite de Cercle

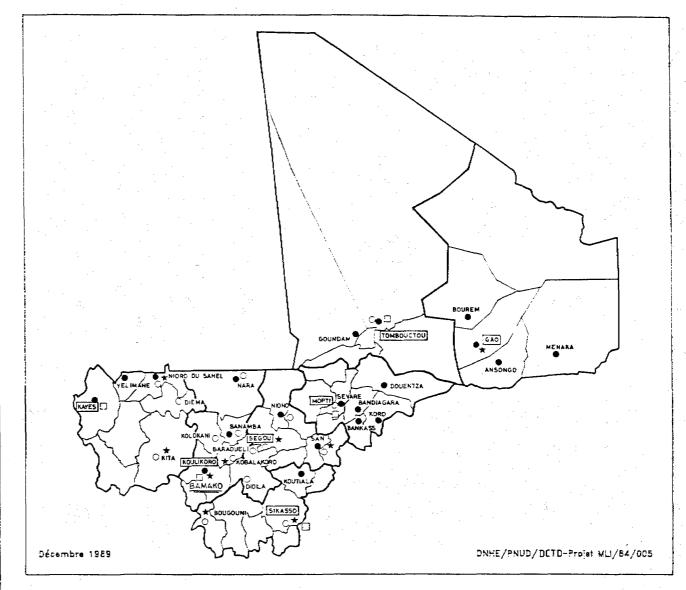


Figure 2.2.

INFRASTRUCTURES REGIONALES DE LA DNHE ET DE LA DNOP

2.1.2. Ministère de la Santé Publique et des Affaires Sociales

Ce ministère intervient dans le Secteur par sa Direction Nationale de l'Hygiène Publique et de l'Assainissement (DNHPA) qui est chargée d'élaborer et mettre en oeuvre la politique nationale en matière d'assainissement et de définir et contrôler les normes de qualité en matière d'eau potable. La DNHPA dispose de structures très décentralisées avec une Direction dans chaque Région et un Service dans chaque Cercle [2-5].

2.1.3. Ministère de l'Agriculture

Ce ministère intervient dans le Secteur en tant que principal utilisateur de la ressource en eau. Outre la Direction Nationale de l'Agriculture, le ministère comprend une Direction Nationale du Génie Rural (DNGR) qui a en charge notamment, à travers sa Division des Aménagements Hydrauliques, la conception, la réalisation ou la supervision de toutes les études et travaux en matière d'aménagements hydro-agricoles, pastoraux et sylvicoles [2-6].

La DNGR a sous sa tutelle l'Opération de Travaux d'Equipement Rural (OTER) qui exécute pour son compte une partie des travaux d'aménagement hydraulique (petits barrages, mares,...). La DNGR est en train de se doter de structures régionales.

En ce qui a trait a l'utilisation de l'eau pour l'irrigation, l'Institut d'Economie Rurale (IER), dépendant du ministère de l'Agriculture, est un organisme plus spécifiquement chargé des études et statistiques économiques dans le domaine agricole et des recherches et expérimentations sur le système "eau, sol, plante".

2.1.4. Ministère de l'Elevage et de l'Environnement

Le Mali étant un pays d'élevage, l'alimentation en eau du bétail constitue un soussecteur important de l'Eau qui concerne essentiellement la Direction Nationale de l'Elevage (DNE) chargée, notamment à travers sa Division Aménagement et Hydraulique Pastorale, de mettre en oeuvre, coordonner et contrôler la politique et les programmes d'hydraulique pastorale ainsi que le suivi des pâturages et des points d'eau pastoraux dans le pays. A cet effet, la DNE a une forte représentation régionale dans le pays.

La Direction Nationale des Eaux et Forêts est également concernée à un moindre degré (pisciculture notamment).

2.1.5. Ministère de l'Administration Territoriale et du Développement à la Base

Ce ministère, anciennement ministère de l'Intérieur, né du concept des initiatives de base, a pour but de promouvoir et d'organiser toutes les actions de développement par la base selon les directives du Parti et du Gouvernement à travers les structures administratives du pays, notamment en matière d'aménagements hydro-agricoles et de réalisations de points d'eau.

L'eau étant un facteur primordial de développement, le MATDB aura donc un rôle majeur à jouer dans le Secteur Eau puisque c'est par le biais de ses Comités de développement au niveau de l'Arrondissement, du Cercle et de la Région et de leurs budgets propres que pourront être mis en oeuvre et suivis de nombreux programmes du Secteur Eau et que leur impact pourra être évalué.

Nouvellement incorporée au sein de ce ministère, la Direction Nationale de l'Action Coopérative (DNACOOP) est chargée, entre autres, de promouvoir, organiser et gérer les coopératives agricoles villageoises (Chapitre 3).

2.1.6. Ministère du Plan

En tant qu'institution chargée de la Planification nationale et régionale, le ministère du Plan définit les grandes orientations et priorités et propose les enveloppes budgétaires allouées à chaque secteur de développement dans le cadre de plans quinquennaux. Ces plans sont notamment établis sectoriellement par les Commissions Nationales de Planification.

2.1.7. Ministère des Travaux Publics, de l'Urbanisme et de la Construction

Bien que relativement peu concerné directement par le Secteur Eau, ce ministère, par l'entremise de sa Direction Nationale des Travaux Publics et de celle de l'Urbanisme, peut être intéressé dans la mesure où:

- la construction des routes (et des chemins de fer) requiert la création de points d'eau (puits, forages) utilisables ensuite par les populations riveraines;
- le creusement de zones d'emprunt pour la construction des routes peut être conçu de manière à servir de mares artificielles pour le bétail moyennant un surcoût relativement faible;
- le volet "Assainissement" du Projet Urbain du Mali intéresse également le Secteur Eau.

2.1.8. Ministère des Finances et du Commerce

Ce ministère, bien que n'intervenant pas dans le Secteur directement, est concerné dans la mesure où il aura à inclure la participation du Gouvernement à la programmation du Schéma Directeur. En outre, le développement du Secteur privé l'intéresse au premier chef.

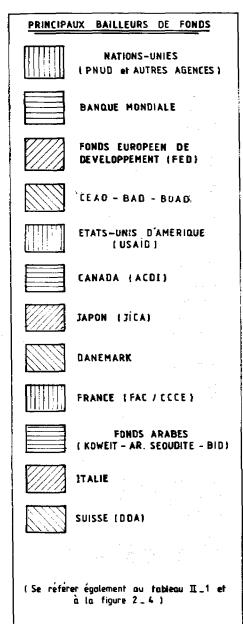
2.1.9. Coordination intersectorielle

Parmi les Commissions Nationales de Planification [2-7] mises en place par le Gouvernement en 1981, la Commission Nationale des Mines, de l'Energie, de l'Eau, de l'Industrie et de l'Artisanat, présidée par le MIHE, est chargée de définir les objectifs, d'assurer la coordination, de chiffrer le coût des actions à entreprendre, de proposer les mesures correctives et d'en dresser le bilan annuel.

C'est dans ce cadre qu'a été décidée la nomination, en Septembre 1989, par le ministère de l'Industrie, de l'Hydraulique et de l'Energie, d'un Comité Consultatif de l'Eau [2-8] chargé de la coordination et de l'évaluation des programmes d'eau et composé de représentants de la DNHE, qui en assure la présidence, de la DNOP, de la DNHPA, de la DNGR, de l'IER, de la DNE, du ministère de l'Administration Territoriale et du Développement à la Base et du ministère du Plan, regroupant ainsi la plupart des administrations du Secteur et constituant de ce fait la cheville ouvrière de la mise en oeuvre, du suivi et de l'actualisation du Schéma Directeur de mise en valeur des ressources en eau du Mali, dont il faudra soutenir et développer les actions (Chapitre 9: Fiche de projet A1).

2.2. AUTRES INTERVENANTS DU SECTEUR

Le tarissement de plus en plus précoce des points d'eau traditionnels utilisés par la population et le bétail dû au déficit pluviométrique chronique enregistré au Mali depuis le début des années 1970 a nécessité une intervention de plus en plus massive de l'assistance externe pour compenser la faiblesse des moyens financiers de l'Etat. Cette assistance s'est concrétisée par la mise en oeuvre de nombreux projets, consacrés essentiellementàl'hydraulique villageoise etàl'hydraulique agricole à partir des grands fleuves avec, au début, une forte composante d'expertise étrangère pour suppléer au nombre insuffisant de cadres nationaux formés et expérimentés.


Au niveau des financements, les fonds ont été affectés, d'une part sous forme de prêts et de subventions (essentiellement par les grandes banques et organismes de financement internationaux et bilatéraux), d'autre part sous forme de dons d'organismes internationaux, multinationaux et bilatéraux de coopération et, à un moindre degré, d'organisations caritatives non gouvernementales (ONG). Les figures 2.3 et 2.4 montrent les zones d'intervention des principaux bailleurs de fonds du Mali ainsi que l'origine et la destination des fonds durant le plan quinquennal 1987-1991 en hydraulique souterraine avec 17 projets totalisant environ 56,5 milliards de F.CFA pour l'hydraulique villageoise (Tableau 2-1).

Parmi les différentes sources de financement, le Programme des Nations Unies pour le Développement (PNUD) a tenu un rôle prépondérant en soutenant dès 1967 et jusqu'à aujourd'hui le secteur hydraulique du Mali par une série de projets successifs d'eaux souterraines (Annexe 3) et de mesures hydrologiques au sein de la Direction Nationale de l'Hydraulique et de l'Energie; ce qui a facilité, entre autres résultats, l'intervention et les investissements d'autres assistances dans le Secteur Eau.

Au plan national, le secteur privé malien n'intervient que très peu dans le Secteur de l'Eau, mais l'orientation actuelle du Mali vers une politique de privatisation devrait favoriser le développement de sociétés privées nationales ou du moins, dans un premier stade, mixtes (Chapitre 9); notamment en ce qui a trait:

- aux études préliminaires, au suivi de travaux et aux études d'impact (Bureaux d'études maliens, éventuellement en liaison avec des Bureaux d'études étrangers),
- aux travaux d'équipements hy drauliques (ingénierie, forages, puits, moyens d'exhaure, adductions d'eau, micro-barrages, irrigation),
- à la gestion et aux travaux d'entretien et de réparation des systèmes d'adduction d'eau, des petits barrages, des pompes, et à la commercialisation des pièces détachées.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

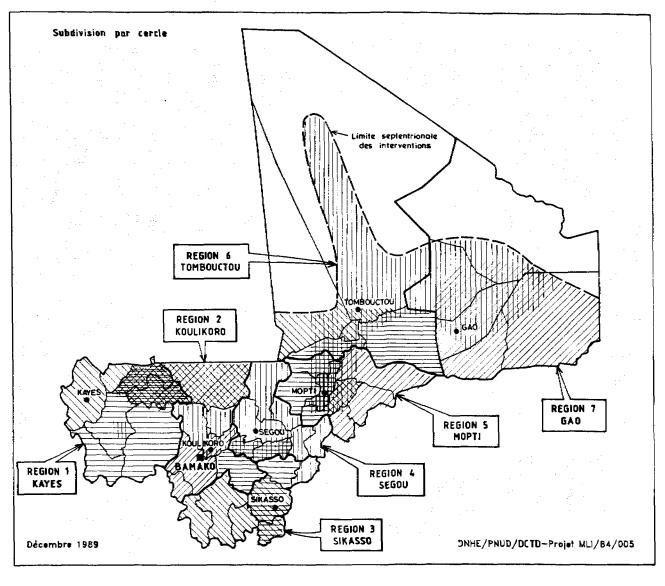
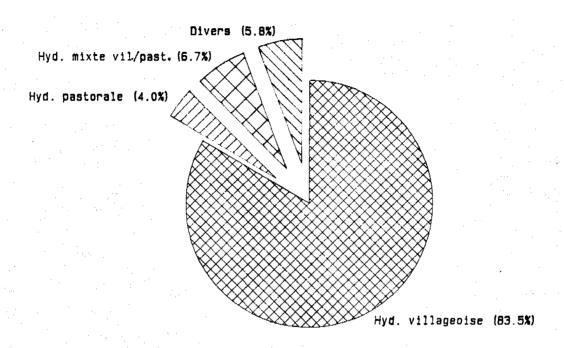



Figure 2_3

ZONES D'INTERVENTION DES PRINCIPAUX BAILLEURS DE FONDS DANS LE SECTEUR HYDRAULIQUE SOUTERRAINE (1987-91)

SCHEMA DIRECTEUR DES RESSOURCES EN EAU

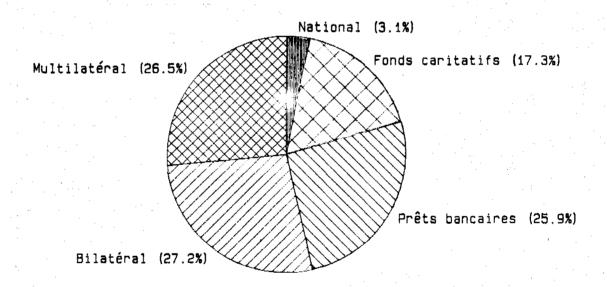


Fig. 2_4 OBJECTIF ET FINANCEMENT DES PROJETS
D'HYDRAULIQUE SOUTERRAINE (1987-1991)

Tableau 2.1. - Projets d'hydraulique souterraine financés pour la période 1987-1991

Remarque: Certains projets seront encore en exécution après 1991, d'autres ont commencé avant 1987.

PROJET	SOURCES DE FINANCEMENT	D'EXECUTION	OBJECTIPS OLOBAUX	REGION D'INTERVENTION	BUDGET (10° F.CFA)
Programme d'exploitation des eaux souterraines	Helvetas SUISSE	D.N.H.E.	200 forages productifs 200 pompes manuelles	Bougouni, Yanfolila Kolondiéba	1.207
Programme d'hydraulique villagecise et pastorale	F.A.D B.I.D Fonds Koweitien	D.N.H.B.	190 forages reconnaissan. 1110 points d'eau (1)	Liptako-Gourma	8.800
Projet Hali Aqua Viva	C.C.C.B F.A.C.	D.N.H.B	390 forages Réhabilitation anc. for.	San, Tominian, Bla Yorosso, Macina	2.138
Projet d'hydraulique villageoise,Régions 1 - 2	F.B.D.	D.N.H.E.	300 forages productifs 3 bases entret. pompes	Nara, Diéma, Nioro	1.290
2eme Programme d'hydr. vil. et past CEAO	Fonds Koweitien	D.N.H.E.	500 points d'eau	Youvarou, Niafounké	2.250
Programme d'hydraulique rurale et d'assainis- sement (chaîne de l'eau)	U.N.I.C.B.F	D.N.H.E.	400 forages productifs 400 pompes manuelles 6 bases pompes	Régione : Ségou, Koulikoro, Gao Mopti, Tombouctou	3.736
ler Programme d'hydr. Vil et past- CBAO/2e tranche	F.A.D.	D.N.H.B.	260 forages productifs 260 pompes manuelles 10 puits modernes	Kayes, Yélimané, Diéma Nara, Banamba	3.200
Programme de forages dans les cercles de Sikasso et Kadiolo	Coopération Danoise	D.N.H.E.	400 forages productifu 400 pompes manuelles 1 Base pompes à Sikasso	Sikasso, Kadiolo	1.750
Programme d'hydraulique villageoise	Coopération Italienne	D.N.H.B.	600 forages productifs 600 pompes manuelles	Koulikoro,Kati Kangaba,Bamako	5.500
Progra. de développement intégré du Kaarta ODIK	Coopération Canadienne	Ministère de l'Agriculture	250 forages productifs 20 puits-citernes	Nioro, Diéma Yélimané	5.920
Programme d'hydraulique rurale	CARITAS SUISSE	D.N.H.B.	250 Forages productifs Puits citernes	Bandiagara	?
Programme d'hydraulique pastorale, Région Mopti	C.C.C.B.	O.D.B.W.	44 forages reconnaissance 26 points d'eau 8 puits	Karouassa, Senomango Kema-Dioura	420
Programme de recasement population de Manantali	U.S.A.I.D.	D.N.H.B.	82 Forages productifs 40 puits-citernes	Zone projet barrage de Manantali	320
Programme d'approvision. en eau des populations rurales	Arabie Saoudite	D.N.H.E.	274 forages productifs 274 pompes manuelles	Région de Ségou	14.500
Projet de développement de l'élevage-Mali NE	F.E.D., F.A.D. Fonds Aide Italien	Ministère de l'Elevage	300 forages (2) 13 puits-citernes 64 puits réhabilités	Ménaka, Ansongo In Tillit	1.680
Projet alimentation en eau populations rurales KBK - Avenant n 2	Banque Mondiale	D.N.H.B.	325 forages productifs 325 pompes manuelles	Kita , Bafoulabé Kayes	3.328
Projet Mali-Sud/2 Avenant 1	F.I.D.A.	D.N.H.B.	130 forages productifs 130 pompes manuelles	Sikasso, Koutiala	261

^{(1) 80} puits-citernes, 15 puits directs, 5 forages équipés de pompe solaire, 10 mares.

⁽²⁾ Un financement complémentaire du P.A.D. est en cours d'obtention pour la réalisation de 1000 puits.

2.3. CADRE LEGISLATIF DU SECTEUR EAU

Le projet de Code de l'Eau élaboré en 1986 et remanié fin 89 par les administrations concernées (essentiellement la DNHE et la DNHPA) avec l'aide du PNUD et de la Banque Mondiale a été récemment adopté et constitue la Loi n° 17-AN-RM du 27/02/90 fixant le Régime des Eaux du Mali. Un décret d'application portant réglementation du Régime des Eaux accompagne le projet de loi [2-9].

Cette loi qui comporte 7 chapitres règlemente:

- les domaines hydriques de l'Etat et privé ainsi que leurs attributions, prérogatives, obligations et responsabilités,
- les usages de l'eau selon ces domaines, notamment le régime des autorisations, concessions, déclarations, enregistrements et servitudes,
- le contrôle de la qualité des eaux et leur protection ainsi que le contrôle de la recherche ou de l'exploitation des eaux à des fins commerciales,
- les travaux hydrauliques et leur contrôle,
- les infractions et sanctions y relatives.

L'une des mesures d'application du Régime des Eaux pourrait être la constitution d'un Fonds National de l'Eau [2-10] dont les textes législatifs avaient également été proposés dès 1986, mais n'ont pas été officialisés jusqu'à présent.

Ce Fonds alimenté par huit sortes de recettes devait permettre de réaliser certaines opérations non financées par ailleurs, notamment en matière de travaux, d'équipements et de leur maintenance pour l'approvisionnement en eau des zones rurales et semi-urbaines non couvertes, et de favoriser également les initiatives de base par l'intermédiaire des Comités de développement, avec l'appui d'un système de crédit très décentralisé.

2.4. DIFFICULTES ET CONTRAINTES

Les difficultés sont nombreuses et souvent d'une importance telle qu'elles peuvent constituer de véritables contraintes pour le développement du Secteur de l'Eau au Mali.

Le 3e Atelier national de la Décennie Internationale de l'Eau Potable et de l'Assainissement (DIEPA), en décembre 1988, a fortement insisté, dans ses conclusions et recommandations, sur la nécessité d'appliquer les solutions permettant de lever ces contraintes pour la plupart déja identifiées par les Ateliers précédentes [2/4].

2.4.1. Sur le plan institutionnel et structurel

Les contraintes les plus importantes sont :

- l'insuffisance de coordination entre les divers intervenants du Secteur tant au plan national qu'à celui de l'aide extérieure d'où un manque d'intégration des projets exécutés jusqu'à maintenant,
- l'imprécision des textes organiques délimitant les domaines de compétence et les responsabilités et attributions des différents partenaires, souvent complémentaires, intervenant dans le Secteur, et amenant des chevauchements et des duplications,
- la faiblesse des structures et des moyens de planification, de programmation et de suivi des actions tant au niveau central que régional constituant un handicap sérieux car les institutions spécialisées sont trop souvent dans l'impossibilité de hiérarchiser, de canaliser et de délimiter ces actions (Fiche de projet A1, Chapitre 9),
- l'inadéquation fréquente entre l'organigramme des institutions et les tâches leur incombant ou bien entre leurs responsabilités et attributions et les moyens qui leur sont donnés pour les assumer, notamment en matière de planification du Secteur et de gestion des ressources,
- la centralisation excessive (souvent exclusive) des institutions malgré un réel effort de régionalisation de la plupart d'entre elles, d'où un manque de "communication" avec les bénéficiaires et la faiblesse de leur participation,
- l'insuffisance de qualification, donc de formation et d'expérience, des cadres et techniciens nationaux, notamment dans les domaines de la planification et de la gestion, dûe surtout à l'absence d'un plan global à long terme établi sur les besoins réels du pays, mais également à une politique professionnelle et salariale peu motivante.

2.4.2. Sur le plan législatif

Tous les intervenants du Secteur s'accordent pour souligner l'importance du Code de l'Eau au Mali. La loi réglementant le Régime des Eaux constitue donc un sérieux atout, sous réserve toutefois qu'elle soit suivie d'un train de mesures concrètes d'application sur le terrain et que les moyens soient donnés aux institutions responsables pour les mettre en oeuvre.

L'absence de textes légaux définissant le rôle et les obligations des nombreuses ONG opérant au Mali dans le Secteur de l'Eau est une contrainte à la coordination et à la planification ainsi qu'au plan technique, car malgré l'existence d'un Comité de Coordination des Actions des ONG, celles-ci sont encore trop nombreuses à opérer en marge des institutions officielles, leurs actions ne s'insérant que rarement dans un objectif global et ne respectant pas toujours les normes de l'Administration.

Dans le cadre de la politique de privatisation, il faudra aussi définir le rôle et les obligations des entreprises privées du Secteur Eau, notamment sur la qualité technique des ouvrages qu'ils réaliseront (Fiche de projet A5, Chapitre 9).

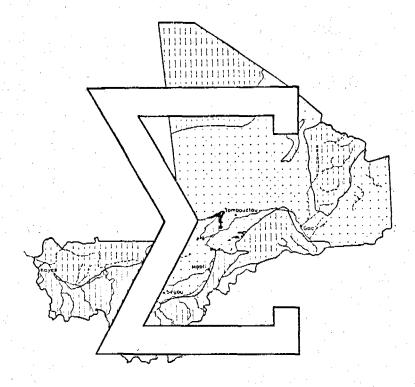
2.4.3. Sur le plan financier

La contrainte majeure réside dans la difficulté, pour l'Etat, de mobiliser des ressources financières suffisantes pour couvrir les coûts d'investissement et même les frais récurrents de fonctionnement et d'entretien des infrastructures hydrauliques lorsque ces frais ne sont pas assurés par les populations bénéficiaires. La conséquence est la rapide détérioration de ces infrastructures par manque d'entretien et de réparation et, par suite, la désaffection et la méfiance des populations.

Cette contrainte financière a également pour conséquence la difficulté qu'éprouvent les responsables du Secteur à maîtriser réellement, face aux préceptes et préférences des bailleurs de fonds, la planification et la programmation à long terme du Secteur et donc à mettre en oeuvre une politique homogène, par exemple en matière de priorités, de choix des types d'ouvrage, de standardisation des normes (nombre d'ouvrages, moyens d'exhaure, participation villageoise, systèmes d'adduction et d'irrigation, etc...), de formation, de financement.

L'insuffisance de mesures incitatives pour promouvoir la participation du secteur privé est ressenti comme une contrainte financière dans la mesure où, dans de nombreux domaines, les opérateurs économiques maliens pourraient alléger les charges de l'Etat en le relayant dans les domaines "rentables" du Secteur: travaux d'équipement hydraulique, moyens d'exhaure, adduction d'eau, irrigation.

2.5. CONCLUSION


Le Secteur Eau, surtout dans des pays comme le Mali où cette ressource est vitale et à la base même de tout développement quel qu'il soit, est un domaine complexe. Le grand nombre d'intervenants, la technicité élevée, les implications législatives, sociales, économiques et financières rendent ce Secteur difficile à coordonner, à homogénéiser, à planifier et à gérer, en un mot à maîtriser.

C'est pourquoi, l'une des conditions fondamentales de réussite passe avant tout par la maîtrise institutionnelle, législative et financière du Secteur. Le présent Schéma Directeur, par ses propositions des chapitres 8 et 9, devrait être l'occasion d'une prise de conscience pour tenter de lever ou du moins aplanir les contraintes en mettant tout en œuvre pour renforcer les institutions responsables et leur donner, avec l'assistance des bailleurs de fonds, les moyens d'une véritable politique nationale afin de valoriser les importants investissements consentis et à venir dans le Secteur Eau.

CHAPITRE 2

Références bibliographiques hors projet

- [2-1] Evaluation du Secteur Eau des pays du Sahel CIEH 1989
- [2-2] Décret N° 138/PG-RM du 14 novembre 1966 portant organisation de la Direction Nationale de l'Hydraulique et de l'Energie.
- [2-3] Proposition de Décret portant organisation et modalités de fonctionnement de la Direction Nationale de l'Hydraulique et de l'Energie 1985.
- [2-4] 3e Atelier national de la Décennie Internationale de l'Eau Potable et de l'Assainissement Bamako 6-10 décembre 1988.
- [2-5] Décret n° 153/PG-RM du 16 juillet 1980 fixant les attributions et l'organisation de la Direction Nationale de l'Hygiène Publique et de l'Assainissement.
- [2-6] Décret n° 285/PG-RM du 9 septembre 1986 fixant les attributions et l'organisation de la Direction Nationale du Génie Rural.
- [2-7] Décret N° 44/PG-RM du 28 février 1981 portant sur les Commissions Nationales de Planification.
- [2-8] Décision ministérielle N° 1844/MIHE-CAB du 5 septembre 1989, nommant les membres du Comité Consultatif de l'Eau.
- [2-9] Proposition de Loi fixant le Régime des Eaux République du Mali 1989.
- [2-10]- Fonds National de l'Eau: note d'orientation et proposition de création MIHE 1988.

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 3

ENVIRONNEMENT DEMOGRAPHIQUE ET SOCIO-ECONOMIQUE

TABLE DES MATIERES

	-	and the control of th	
3.1.	STRUCTURE 3.1.1. 3.1.2. 3.1.3.	DE LA POPULATION	
3.2.	ORGANISATI 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6.	Organisations villageoises	14 15
	IMPACT DE 3.3.1. 3.3.2. 3.3.3.	L'EAU SUR LE DEVELOPPEMENT	19 19 20
	EAUX		~ ~
3.1.		ns de la population et du nombre de localités e, Région et catégorie 4 et	Ę
3.2.	Accroissem par catégo	ment intercensitaire de population 1976 et 1987 prie de localités	6
3.3.		ons socio-professionnelles villageoises villages enquêtés	7
3.4.		s modernes et traditionnelles de gestion des points d'eau pes dans les villages enquêtés	1.0
3.5.	Sources de (hommes et	e revenu monétaire des villages enquêtés c femmes) classées par ordre d'importance	16
3.6.	Difficulté	es et contraintes d'organisation du milieu rural 1	18
FIGU	RES		
3.1.	Densité de	e population (recensement 1987)	2
3.2.	Gestion et	participation villageoise	l 1
3.3.	Usages de	1'eau	13
2 1	Courses de	moveny monátnime elegados	

ENVIRONNEMENT DEMOGRAPHIQUE ET SOCIO-ECONOMIQUE

Les conditions démographiques et socio-économiques constituent des éléments de base essentiels pour l'élaboration du Schéma Directeur. De la population, de sa répartition et de sa croissance dépendent directement les besoins en eau ; de son organisation sociale et de sa productivité dépend la réussite des programmes de développement.

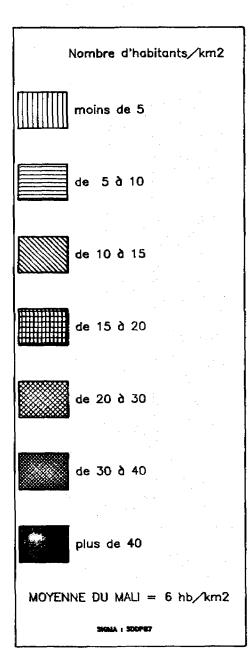
3.1. STRUCTURE DE LA POPULATION

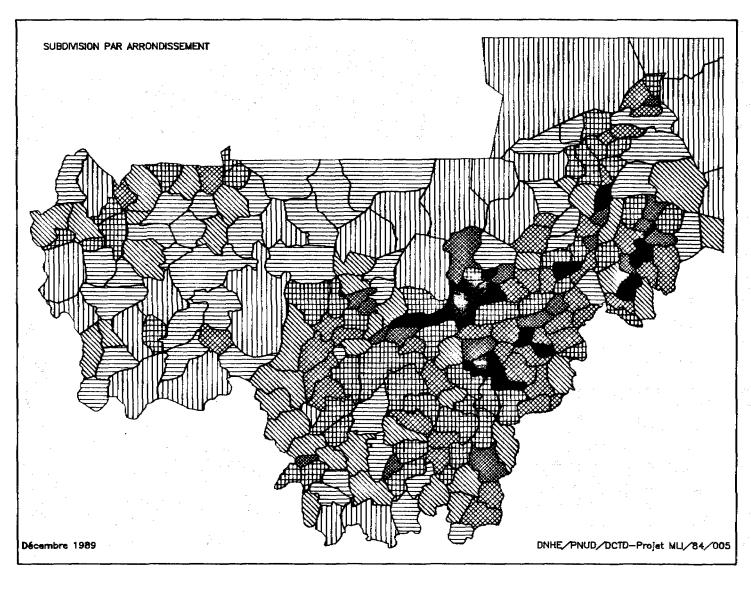
3.1.1. Recensements 1976 et 1987

Les deux derniers recensements de la population malienne ont été réalisés en 1976 [3-1] et en 1987. Concernant ce dernier recensement, seuls ont été communiqués des résultats provisoires [3-2].

Dans le tableau statistique 3.1 ci-après, les effectifs de population résidante en 1987 sont détaillés par Cercle et comparés aux effectifs obtenus lors du recensement précédent de 1976. Les taux moyens annuels d'accroissement correspondants ou taux intercensitaires sont également calculés. Ainsi, à l'échelon national, le taux moyen d'accroissement est de 1,7 % par an. Selon "L'enquête démographique et de santé au Mali - 1987" [3-3], ce taux de 1,7 % résulte d'un taux d'accroissement naturel de 2,7 % (voisin de celui de la plupart des pays africains) diminué d'un taux négatif migratoire de - 1 % (émigration à l'extérieur du Mali).

Bien que les résultats définitifs officiels du recensement pourraient ne pas confirmer les résultats provisoires, les effectifs 1987 seront adoptés tels que par le Schéma Directeur de même que le taux d'accroissement de 1,7 % par an malgré le taux de 2,54 % retenu dans le "Rapport de campagne 1988/89: perspectives 1989" du Comité National d'Actions d'Urgence et de Réhabilitation (CNAUR), qui actualise l'effectif de population de 1987 a 1989 [3-4].


La figure 3.1 indique les valeurs, par Arrondissement, de la densité de population en 1987 et la moyenne nationale.


3.1.2. Répartition et classement de la population

Selon la classification communément adoptée au Mali, la population nationale est regroupée comme suit dans le Schéma Directeur :

- Villages (au sens administratif): population résidant dans des localités de 200 à 2.000 habitants ou rattachée à ces villages (hameaux et lieux-dits),
- Centres ruraux : population résidant dans des localités de 2.000 à 5.000 habitants et pouvant englober des quartiers excentrés,
- Centres semi-urbains : population résidant dans des localités de 5.000 à 10.000 habitants,
- Centres urbains : population résidant dans des localités de 10.000 habitants et plus.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

DENSITE DE POPULATION (Recensement 1987)

Figure 3.1

Les deux premières catégories de localités constituent le milieu rural, les deux dernières le milieu urbain.

Le tableau 3.1 montre la répartition de la population du Mali selon ces catégories de localités en 1989 et selon le mode de projection défini au chapitre 3.1.3. ci-après.

A noter que, sur le plan administratif, les chefs-lieux de Cercle et de Région sont considérés comme des centres urbains et les chefs-lieux d'Arrondissement comme des centres ruraux quelque soit leur population.

En comparant la figure 3.1 de ce chapitre et la figure 1.1 du chapitre 1 (zones à potentiel homogène), on observe que d'une manière générale:

- la zone de nomadisme correspond au niveau le plus bas de densité de population (moins de 5 hab/km2),
- les zones de transhumance avec ou sans cultures dispersées correspondent, sauf particularités locales, à des densités faibles (moins de 10 hab/km2),
- les densités relativement fortes (15 à 40 hab/km2) se trouvent surtout en zones d'élevage sédentaire avec cultures dispersées ou continues,
- les plus fortes densités (40 hab/km2 et plus) se situent dans la Région de Ségou et le Pays Dogon.

3.1.3. Projections de population en 1989 et aux horizons 1996 et 2001

a) Taux de croissance démographique

A moins d'introduire des hypothèses plus ou moins arbitraires, on ne peut actuellement établir des projections démographiques qu'à partir des effectifs provisoires de 1987 et des taux d'accroissement intercensitaires. Ceci revient à retenir l'hypothèse que l'émigration se poursuivra au même rythme que de 1976 à 1987, soit -1 % par an.

Faute d'éléments plus précis, on se contentera de projeter les populations, nationale et par circonscription administrative, en reconduisant les taux intercensitaires tout en gardant à l'esprit que l'interprétation de ces données requiert une certaine prudence, ainsi qu'il est précisé dans le document de présentation du recensement 1987 [3-2].

Certaines projections proposées pour le long terme par la Banque Mondiale [3-5] font intervenir, dans leurs hypothèses de base, une baisse du taux de fécondité qui, pour l'Afrique au Sud du Sahara, commencerait au début des années 1990 et aurait alors pour effet d'abaisser le taux d'accroissement démographique. Cependant, le Mali se situe dans la zone où ce phénomène commencerait le plus tard (entre 1995 et 2000); il n'en a donc pas été tenu compte ici.

b) Résultat des projections

Le résultat des projections est donné dans le tableau 3.1 par Cercle et par catégorie de localités (villages, centres ruraux, semi-urbains et urbains). Les projections par Arrondissement sont présentés dans l'Annexe 5 pour 1989 et 2001 seulement.

	POPE	LATION	TBRE DE	•		PROJECTIO)¥ 1989	PAR CLAS						PROJECTI	OH 1996	PAR CLA								ON 2001	PAR CLAS			
	RECE	NSKR .	LOCALITES	! !	POPULATIO)¶			B.	dr fo	CALITI	3	POPULAT	100			IB .]			-		POPULATIO	O#			IB.	NR LOC	ALITI
ODE CERCLE	1976	1987		Y TLE	CR.	CS	CE .	TOTAL	¦ TLG	CE	CS CI) ¦ YLG	CR	CS	CT	TOTAL	¦ YLG	CR	CS (70 ; 1	YLG	CR	CS	CT	TOTAL	; TLG	CR	CS CI
BF BAFOULABR	100351	143939	266	119436	28098	7731	O	155265	254	11	1 1	13141			9	208958		11	4	0 1	38585	62142	33677	33503	267907			5 3
DN DIBNA	83826	110550		78180	32428	578 9	-	116397			-			6900	0	139899	127	11	. 1	•	95570	44854	19542	C	159966	123		3 (
KA KAYES	207173	247200	331	159822	41064	6970	47994	255850	313	16	1 1	1752		8206		290354	308	21	1	1 1	85003	72974	14886	63497	336360	303	25	2 3
ER ERNIRBA	98805	101788	203	86063	11455	5128	0	102646	198	. 4	1 (8583		5759	0			_	1	-	87621	10857	11303	0	109781	197		2 0
EL TITA	187889	233906		171304	43258	5342	23714	243618	298	- 11	1	17789		6746		281346			1	1 1	81793	91217	7969	23431	304410	280	33	1 1
EL HIORO	119039	131790	191	98050	12407	5760	18448	134657	184	. 5	1	10149	1 14316	6567	23540				1	_	99402	20958	7212	23085	150657	180	•	1 1
YB YBLIKAUR	75667	89402	86	12289	49915	0	0	92204	71	15	0 (1 4268	5 43347	16958	0	102990	69	14	3	0	11829	45474	24289	0	111592	67	15	4 (
ot lère Région	872750	1058575	1531	755144	218625	36720	90148	1100637	1444	78	6 3	80592	3 291288	75931	58706	1275848	1416	190	12	3 8	29803	348476	118878	143516	1440673	1388	119	18 (
BA BANANBA	89960	108775	202	80388	16835	15382	0	112605	195	. 5	2 (9051	9 13677	22882	6	127138	195	. 4	3	0	94467	19225	14128	10864	138684	193	6	2 1
DI DICILA	184093	253706	344	194523	45546	18866	10115	269850	323	17	1	2301	5 52879	35439	12156	330649	319	15	\$	1 2	10998	87536	30228	24758	383512	307	31	4 2
EA KANGABA	43914	54072	60	36759	8235	11194	. 0	56188	55	3	2 (397	2 11529	13002	0	64253	54	. 4	2	9	41453	9670	19684	9	70807	53	4	3 (
EI KATI	265742	340600		261921	45452	10429	35251	353053	482	16	2	2938	1 58043	17685	43119	412718	477	26	3	1 3	19660	71331	30002	45236	457229	469	26	5 1
TO KOLOKADI	121314	149959		125091	19554	0	11243	155888	267	7	9	1 13913	1 26990	0	12539	178660	265	•	0	1 1	19172	34024	0	13554	197050	263	11	0
TO KOULIKORO	106787	125811		92687	15753	0	21230	129670	244	5	6	1 1003	6 13874	5370	24605	144225	243		1	1 1	05826	16737	5851	24643	153057	242	.6	1
PA BARA	119427	147337		131960	8181	13054	0	153195	286	3	2	1437	2 17812	14388	0	175942	282	! 1	2	0 1	52613	26547	15424	8	194584	279	10	2 1
ot Zème Région		1180260	1923	923329	159556	68925	77839	1229649	1852	56	11	10375	6 194804	108766	92419	1433585	1835	68	16	4 10	95481	265070	115317	119055	1594923	1806	94	17 (
																-												
BO BOUGOUNI	200109	220443	172	189107	12758	9	23240	225105	456	5	0	1 2000:	6 16493	0	27157	243686	465	(•	1 2	08876	19965	0	28316	257157	464	7	0
ED EADIOLO	90738	98337	119	76941	22921	8	0	99862	111	. 8	0 1	749	2 25322	5088	. 0	105352	108	10	1	O	75782	28450	5398	0	109630	107	11	1
EL KOLONDIRBA	112729	103352	212	96405	. 0	5487	0	101892	211	0	1 1	880	2 4104	5187	0	97343	209	1	1	0	85229	9439	0	. 0	94668	209	3	0
EU EOUTIALA	200019	286244		164872	70534	17165	53254	305825	211	25	3	1 1719	0 110947	26957	76547	386431	197	31	4	1 1	75463	136486	46796	80938	439683	186	46	7
SI SILASSO	317126	374611		261480	41429	5130	79300	387339	477	15	1	1 2709	4 56649	5604	105695	438912	472	20	1	1 2	84433	52382	16885	97884	451584	471	19	3
YA YABPOLILA	96925	121378		104675	22383	0	0	127058	178	Ţ	0	0 1012	0 37921	11896	0	151037	169	1 1	Z	0 1	09464	37285	26263	0.	173012	168	13	4
O YOROSSO	86422	104463		63256	32627	13672	0	109555	82	. 11	2	0 726	0 29632	27087	0	129379	81	16	4	0	75647	34459	35611	0	145717	78	12	5
ot Jène Bégion	1098068	1308828	1817	956736	202652	41454	155794	1356636	1736	71	7	3 9798	4 281068	81819	209399	1552140	1701	100	13	3 10	14894	318466	130953	207138	1671451	1683	111	20
•																												
BA BARAOURLI	109884	127684	237	105945	16782	8559	0	131286	230	6	1	8 1170	7 18221	9670	1	144908	230	•	1	0 1	25768	19357	0	10552	155677	230	6	Q
EL BLA	115998	150382	209	117976	31323	8399	. 9	157698	190	12	1	0 1323	9 43501	•	10302	186202	193	1!	0	1 1	40047	52721	5133	11919	209820	189	18	1
RA NACINA	116154	140109	261	120746	17505	6786	0	145037	253	; T	1	0 1302	7 26311	7641	0	164209	250	11	1	0 1	32343	39171	8317	9	179831	245	15	1
MA MIONO	115480	161594		121914	18377	16299	15475	172065	230	6	3	1 1328	1 35983	25899	20282	215045	228	13	Ţ	1 1	49107	43279	35992	24605	252983	225	15	5
SA SAD	169597	202096		163690		0	32242	208807	401	\$	0	1 1779	9 18309	Ð	38326	234564	405	1	0	1 1	92470	19507	•	33945	245922	105	7	0
SR SRGOO	341288	418621		258397	37694	15415	123271	434777	537	14	2	3 2792	4 52825	15849	148143	197071	527	1	2	3 2	86322	74592	17974	152411	531299	519	27	2
TO TONITIAN	113823	127764		121995	8536	Ð		130531	316	3	0	0 1294	6 11452	0	0	140918	315	i (1	0 1	36727	12248	0	9	148975	315		
ot fène Région	1082224			1010663		2010	170999	1380201	9176	1 19	1	5 10992	3 206602	28654	917659	1582917				£ 31	18752	260875	21272	911119	1724507	2128	92	9 1

VLG : villages (jusqu'à 2000 hab)

CO : centres urbains (10000 hab et plus)

		POPU	MOITAL	eber de	! !	i	POJECT I	ON 1989	PAR CLAS	SSE			;		1	PROJECT	OH 1996	PAR CLAS	SE			1		!	PROJECTI	ON 2001 !	PAR CLASS	R		
	·:	RECE	i ser	LOCALITES	:	POPULATIO) 			;B. 1	L LOC	ALITI	BS†		POPULATIO	H			¦88. D	B LO	ALI	188		POPULATIO)曹			#B. D	B LOC	CALIT
ODE	CERCLE	1976	1987		TLG	CR	CS	CO	TOTAL	† TLE	CR.	CS C	ָר ¦ ז	YLE	CR	CS	CO	TOTAL	PLG	CR	CS 1	CO ¦	TLG	CE	CS	CD	TOTAL	TLG	CR	CS {
BG	BARDIAGARA	159690	182869	416	166013	10348	6	11265	187626	411	4	0	1 1	77897	15441	0	12486	205824	409	6	G	1	190234	16655	0	13437	220326	409	6	0
BS	BARCASS	146783	155999	281	137061	20133	0	0	157794	274	7	0 (0 14	42970	21029	9	0	163999	274	7	0	0	143257	25493	0	0	168750	272	9	0
IJ	DJENKE	118580	126083	169	90926	18129	5166	13451	127872	160	7	1	1 9	93855	19243	5379	15547	134024	160	1	1	1	96260	20173	5537	17241	139211	160	7	1
DZ	DOUBRTIA	144555	150608	264	121089	22675	8199	Û	151963	256	1	1 (0 12	20393	28036	8913	0	157342	254	9	1	0	122970	29356	9460	0	161786	254	9	1
KR	KORO	184982	211988	311	172917	24684	19949	0	217550	299	9	3 1	0 18	84282	32447	21988	0	238717	297	11	3	0	192412	39707	23587	0	255706	295	13	3
NO.	NOPTI	196885	243245	245	132361	35030	7123	78515	253029	230	13	1	1 13	33166	53417	7878	96695	291156	223	20	1	1	131921	69978	8466	100991	311356	217	26	1
TE	TRUBUKOU	96161	114405	225	92297	8850	17584	0	118731	218	4	3	0 9	98227	20609	18145	0	136981	214	8	3	0	100856	34187	18619	0	153662	210	12	3
TO	YOUVAROU	81405	76186	180	65435	10486	0	0	75921	176	4	0	0 (62337	13681	0	0	76018	175	5	Ô	0	62678	14895	0	0	77573	175	5	0
ot !	Sème Région	1129041	1261383	2091	9780 99	150935	58021	103231	1290286	2024	55	9 :	3 101	13127	203903	62303	124728	1404961	2006	73	,	3 1	040588	250444	65669	131669	1488370	1992	87	9
DR	DIRE	82706	79507	187	60952	8174	9864	9	78990	103	1	1 (0 !	59248	8022	0	10108	77378	103	3	0	1	58157	7518	O	10286	76361	103	3	9
GĐ	GOUNDAN	108730	113119	138	65356	31086	5840	12690	114972	126	10	1	1 (65675	36934	7400	14075	124084	126	10	1	1	65130	28320	24637	15155	133242	125	8	4
GR	GOURNA RHAROUS	96011	87049	120	81623	10762	14214	0	86599	114	4	2	0 :	51835	17339	15276	0	84450	112	6	2	O	44603	54399	5871	10563	85436	110	8	1
IP	RIAFURE	132936	108178	279	93082	5213	6037	. 6	104332	275	2	1	0 8	83935	2544	5796	9	92275	277	1	-1	0	76917	2224	5630	0	84771	277	1	1
TB	TOKBOUCTOU	70073	65179	54	28217	2272	0	35030	65519	52	1	0	1 :	24738	8	0	48475	73213	53	9	0	1	22352	8	0	44479	66831	53	0	0
ot 1	bène Région	490456	453032	698	309230	57507	35955	47720	450412	671	26	\$.	2 21	85431	64839	28472	72658	451400	671	20	ŧ	3	267159	62861	36138	89483	146641	668	28	6
1	ABSONGO	85622	76896	77	53599	21835	0	9	75434	69	8	0	Ð !	52543	18151	0	0	70694	70	7	0	0	56396	11196	9	8	67592	73	4	0
BE	BOUREN	90703	73134	82	19919	14832	5798	9	70579	76	5	1	0	46344	11880	5535	0	63759	17	ŧ	1	9	12689	11586	5355	1	59630	77	4	1
GÀ	GAO	117486	148886	86	58317	37165	0	60926	156408	13	12	0	1 (60818	29570	10538	87866	188792	73	10	2	1	60687	33189	11319	58698	163893	72	11	2
XD	KIDAL	25454	34813	35	25721	9900	0	0	35621	31	4	0	0 :	29143	14195	0	0	£3338	39	5	Ð	0	29335	21622	9	0	50957	28	Ţ	· O
IL	KBHAKA	51638	500 05	101	36934	12805	9	0	49739	37	4	0	0 :	34293	18254	0	0	52547	95	6	0	Û	31589	16443	10139	8	58171	93	6	2
ot :	Tème Région	3709 03	383734	381	224520	96537	5798	60926	387781	346	33	1	1 2	23141	92050	16073	87866	419130	345	32	3	1	220696	94036	26813	58698	400243	343	32	5
П	BANAKO	419239	6461 63	1	9	0	ē	709203	709203	9	0	0	1	9	. 0	9	1010826	1010826	0	8	0	1		. 0	0	1336415	1336415	0	9	0
ot.	Mali	6394918	7620225	10678	5157721	1028904	302331	1415849	7904805	10243	366	47 2	2 544	44275	1334554	437423	1913655	9129907	10122	467	65	24 5	631405	1600228	561184	2310406	10103223	10008	555	84

Tableau 3.1: Projections de la population et du nombre de localités par Gercle, Région et catégorie

Les taux d'accroissement adoptés pour chaque catégorie ont été calculés sur la base des taux d'accroissement entre 1976 et 1987 (c'est-à dire sur 10,4 ans) reconduits jusqu'en 2001. Si ces taux se maintenaient, le taux de population urbaine passerait de 22,4 % de la population malienne en 1989 à 26,8 % en 2001.

Tableau 3.2. - Accroissement intercensitaire de population 1976 et 1987 par catégorie de localités

Catégorie d	de localités	Augmentation (%) de 1976 à 1987	Taux moyen (%) d'accroissement annuel
Bamako		54	4,25
Autres centres et centres sem		44	3,60
Centres ruraux	•	14	1,30
Villages		6	0,60

3.2. ORGANISATION DU MONDE RURAL

Dans ce domaine, comme dans celui de l'environnement socio-économique en général, l'enquete sur les moyens d'exhaure [SDM/SOC/5] effectuée en Avril-Juillet 1989 dans le cadre de la préparation du Schéma Directeur, a apporté des éléments d'information essentiels au moins sur les zones de l'enquête (2e, 4e et 5e Régions). Ces éléments seront largement utilisés dans ce chapitre.

On a également utilisé les résultats des enquêtes sur les points eaux villageois des Cercles de Yorosso, San et Tominian en 4e Région menées en 1988-89 par le BURGEAP dans le cadre du projet d'hydraulique villageoise de Mali Aqua Viva. Ces enquêtes ont porté sur 853 villages dont 498 équipés de points d'eau modernes, 1.089 forages dont 795 équipés de pompes manuelles et 12 de pompes solaires [3-11].

3.2.1. Organisations villageoises

a) Organisation traditionnelle

D'une manière générale, il existe dans tous les villages une organisation traditionnelle sur laquelle s'appuient, le cas échéant, des organisations de création plus récente.

L'organisation traditionnelle de base est le conseil villageois, dirigé par le chef du village. Le conseil est composé d'anciens et de notables. Le chef de village peut réunir l'assemblée villageoise composée en principe de l'ensemble des adultes du village, y compris les femmes.

Le conseil villageois est parfois appelé "Ton" au sens traditionnel: selon les usages locaux, ils jouent pratiquement le même rôle.

Dans certains villages, il existe aussi une association traditionnelle de jeunes, dite "Ton Dji" qui a notamment pour fonction de rassembler des fonds pour couvrir les dépenses de la vie sociale du village : réceptions, fêtes, etc. Les membres du "Ton Dji" disposent en général de certaines ressources monétaires car ils sont souvent rémunérés comme ouvriers agricoles.

Le tableau 3.3 montre le nombre des différentes organisations villageoises existant dans les 230 villages ayant fait l'objet de l'enquête menée par le projet MLI/84/005 sur les moyens d'exhaure en 2e, 4e et 5e Régions [SDM/SOC/5].

Tableau 3.3. - Organisations socio-professionnelles villageoises dans les villages enquêtés

ORGANISATIONS SOCIO-PROFESSIONNELLES	2ème Région	4ème Région	5ème Région	ENSEMBLE
1 - T O N S dont TONS de villages de	5	2	1	8
+ 2000 hab.	(0)	(0)	- (0)	(0)
2 - ASSOCIATIONS VILLAGEOI- SES DE DEVELOPPEMENT dont villages de + 2000	16	19	2	37
hab.	(2)	(1)	(2)	(5)
(%) de villages ayant un TON ou une ASSOCIATION	(16)	(26)	(9)	(20)
3 - COOPERATIVES dont COOP de villages de + 2000 hab.	2 (1)	1 (1)	1 (1)	4 (3)
4 - AUTRES ORGANISATIONS SOCIO-PROFESSIONNELLES(1)	25	2	3	30
5 - COMITES UNFM actifs	15	3	3	21
(%) du total des villages	(13)	(4)	(9)	(9)
6 - TONS et ASSOCIATIONS ayant des avoirs en				
caisse	5	6	1	12
7 - ORGANISATIONS ayant un compte en banque	9	8	7	24

⁽¹⁾ Dépouillement partiel des données : nombre de villages ayant une ou plusieurs organisations socio-professionnelles autres que TON, Association ou Coopérative.

b) Tons villageois modernes

Sur la base de cette organisation traditionnelle, l'Union Démocratique du Peuple Malien (UDPM) a, lors de sa constitution en 1979, adopté comme modèle d'organisation le Ton villageois (au sens moderne) pour être le "moteur du développement à la base". Le statut-type du Ton villageois a été défini par le décret 53 PG/RM du 27/02/82. Le ton est créé à l'initiative des villageois; il est doté de la pleine capacité juridique et de l'autonomie financière. Au-dessus du ton villageois moderne, le Comité de développement est chargé d'assurer la progammation, la coordination et l'évaluation en matière de développement économique et social au niveau de sa circonscription administrative et est composé, à cet effet, de représentants administratifs et politiques, des services techniques et organismes publics existant au niveau de la circonscription.

Les Tons ont une fonction qui se rapproche de celle des coopératives rurales multifonctionnelles, notamment pour l'approvisionnement et la commercialisation. Le Ton est la forme supérieure de l'organisation socio-professionnelle participative au Mali.

En général, les Tons ont été constitués dans les zones encadrées par des organismes régionaux de développement ou par des projets disposant de moyens suffisants pour conduire des actions d'organisation paysanne [3-6].

La proportion des villages organisés en Tons modernes tels que définis ci-dessus est encore très restreinte. Par exemple, sur les 230 villages des 2e, 4e et 5e Régions visités, 8 seulement sont organisés en Tons modernes (Tableau 3.3).

Faute de moyens précis d'évaluation, il est difficile d'apprécier le degré actuel d'efficacité des Tons villageois.

c) Associations villageoises et autres structures pré-coopératives

L'Association Villageoise représente en principe la forme d'organisation du monde rural préalable à la constitution d'un Ton. Elle a pour fonction première d'initier et de gérer des actions de développement pour le village. Les Associations Villageoises sont plus fréquentes que les Tons modernes : l'enquête sur les moyens d'exhaure en a dénombré 37 sur 230 villages (16 %).

Elles ont souvent été constituées dans les zones d'action d'organismes régionaux de développement (Compagnie Malienne de Développement des Textiles - CMDT, Office du Niger, Opération "Riz Ségou", ODIPAC, projet "Fonds de développement villageois" de Ségou), en vue de :

- promouvoir les activités économiques du village : approvisionnement, crédit agricole, commercialisation, principalement en zone cotonnière et en zone rizicole,
- développer l'alphabétisation fonctionnelle,
- entreprendre des actions de formation et de sensibilisation, notamment en matière de lutte anti-érosive,
- assurer la gestion des points d'eau,
- améliorer les soins de santé.

L'enquête a montré que les Associations Villageoises sont tantôt actives, tantôt purement formelles.

d) Coopératives

Lorsqu'elles bénéficient de l'assistance d'organismes régionaux de développement ou de projets, les coopératives sont réellement actives, essentiellement dans les zones d'élevage (4 coopératives recensées dans les zones de l'enquête sur les moyens d'exhaure). La coopérative de Sofara constitue une réussite particulièrement remarquable qui résulte en fait d'un effort soutenu d'assistance de l'Organisme de Développement de l'Elevage à Mopti - ODEM à la formation et à la responsabilisation et aussi d'appuis financiers. Elle n'est donc reproductible que dans des conditions similaires [3.7].

e) Organisations à vocation générale ou politique

Dans tous les villages, sauf exception, existent des organisations à vocation générale ou politique: Comités Villageois ou Locaux de Développement, Comités de l'Union Démocratique du Peuple Malien, de l'Union Nationale des Femmes du Mali, de l'Union Nationale des Jeunes du Mali. Ces organisations n'interviennent pas directement dans des actions spécifiques, telle la gestion de l'eau, mais certains de leurs membres font souvent partie d'organisations plus spécifiques.

Ces organisations sont évidemment, selon les cas, plus ou moins actives au niveau des villages. Par exemple, les 230 villages de l'enquête sur les moyens d'exhaure ont chacun leur Comité UNFM parmi lesquels 21 seulement ont été identifiés comme ayant une action socio-économique concrète au moment de l'enquête.

3.2.2. Structures de gestion des points d'eau et des pompes

Dans chaque village ou hameau important doté de points d'eau modernes (puits ou forage), l'Administration (en l'occurrence la Direction Nationale de l'Hydraulique et de l'Energie - DNHE) et les projets doivent mettre en place des Comités de gestion de l'eau, composés en moyenne de 5 à 7 membres : Président, Vice-président, Secrétaire, Trésorier, Responsable de l'entretien mécanique, Contrôleurs ou Gardiens (Tableau 3.4).

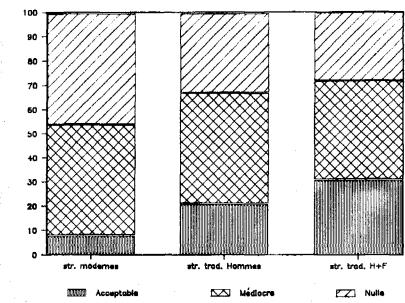
Dans les villages ou hameaux qui n'ont pas de Comité officiel, le point d'eau est parfois géré par une structure traditionnelle (gestion directe par le chef de village seul ou par un petit nombre de responsables désignés par lui, ou parfois par un Comité constitué aussi par lui).

Les enquêtes semblent indiquer que, au moins dans les zones couvertes, les Associations Villageoises, Tons et Comités Locaux de Développement ne sont guère concernés en tant que tels par la gestion des points d'eau; en fait, ces structures n'y sont pas suffisamment nombreuses pour conclure sur leur efficacité au niveau de la gestion des points d'eau.

Tableau 3.4. - Structures modernes et traditionnelles de gestion des points d'eau et des pompes dans les villages enquêtés (enquêtes MLI/84/005 + Mali Aqua Viva)

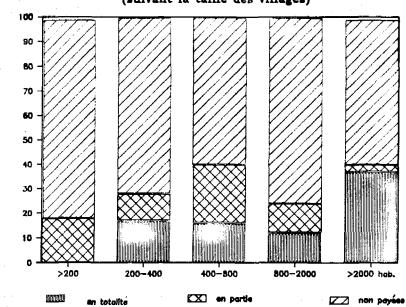
	Structures												
	mode	rnes	tradi	t.	auti	es.	Total						
- 2ème Région : nombre . Pompes gérées	100	187	44	67	4	7	148	261					
- 4ème Région : nombre . Pompes gérées	302	600	270	406	1	2	573	1.007					
- 5ème Région : nombre . Pompes gérées	4	11	29	44	-		33	55					
Ensemble : nombre (%)	406 (54)		343 (45)	·	5 (1)		754 (100						
. Pompes gérées (%)	·	798 (60)		517 (39)		9 (1)	. •	1.324 (100)					

(*) On compte plus de structures que de villages car certains hameaux ont leur propre structure.


Les enquêtes ont également montré que, au moins dans la zone considérée, la désignation des Comités par l'Administration est, dans de nombreux cas, toute formelle et même souvent ignorée des villageois. Le seul membre véritablement actif est le trésorier qui gère les fonds pour la réparation de la pompe, généralement sous l'autorité du chef de village. Les autres membres sont inconnus, même du chef de village et du trésorier. Le plus souvent, ils n'ont pas été informés ou ont oublié qu'ils faisaient partie du Comité. Quand ils s'en souviennent, ils ne connaissent pas leur fonction et donc ne l'exercent pas, à l'exception toutefois des hommes ou des femmes chargés du maintien de l'ordre et de la propreté autour du point d'eau.

Dans les zones d'enquêtes du projet MLI/84/005, il s'est avéré que les structures traditionnelles qui représentent 40 % de l'ensemble des structures de gestion se montrent plus efficaces dans la gestion des points d'eau (21 % de cas de gestion acceptable, 32 % de cas de gestion nulle) que les structures modernes (8 % de cas de gestion acceptable, 43 % de cas de gestion nulle) (Figure 3.2).

La participation villageoise aux coûts des pompes (achat et entretien) est généralement faible dans les villages enquêtés sauf dans la zone CMDT. Au niveau de l'investissement, la plupart des projets fournissent la première pompe gratuitement ou pour un certain pourcentage du coût (11 % des pompes entièrement payées et 8 % partiellement). Les frais d'entretien sont couverts le plus souvent par des cotisations payées par les villageois ou par des fonds propres au village (Figure 3.2).


Figure 3.2 GESTION ET PARTICIPATION VILLAGEOISE

EFFICACITE DES STRUCTURES DE GESTION DES VILLAGES ENQUÊTÉS (suivant le type de gestion)

PAIEMENT DES POMPES DANS LES VILLAGES ENQUÊTÉS

(suivant la taille des villages)

3.2.3. Rôle des femmes

Les femmes sont en général présentes aux Assemblées Villageoises et il existe, dans de nombreux villages, un comité de l'Union Nationale des Femmes du Mali.

Cependant, les comités de gestion des points d'eau sont presque toujours composés exclusivement d'hommes bien que quelques comités, de création récente, comprennent des femmes [SDM/SOC/5] qui sont généralement chargées de veiller à la surveillance, à l'hygiène et à l'entretien des abords des points d'eau.

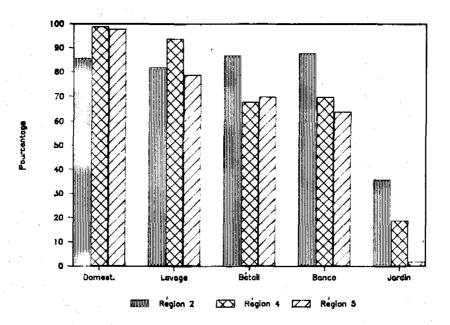
En pratique, les femmes, en tant que principales pourvoyeuses d'eau, sont les premières utilisatrices des pompes villageoises et, par conséquent, les plus directement intéressées à l'entretien et à la propreté du point d'eau.

L'enquête sur les moyens d'exhaure a montré que sur 400 pompes visitées dans les Régions de Koulikoro, Ségou et Mopti, les usages domestiques et le lavage à la pompe, qui sont exclusivement du ressort des femmes, sont les deux utilisations principales: 75 % et 47 % des pompes respectivement. Les femmes pourvoient également à l'abreuvement du bétail de case (Figure 3.3).

Au cours de cette même enquête, pour 7 pompes dont l'utilisation journalière a été mesurée au cours de 3 journées, il a été constaté que :

- les femmes utilisent de 65 à 93 % de l'eau pompée;
- les hommes et les femmes sont presque à égalité dans l'utilisation des pompes pour le jardinage et pour les besoins du marché local ainsi que pour la vente de l'eau.

D'autre part, l'enquête a confirmé que le transport de l'eau entre le point d'eau et l'habitation incombe essentiellement aux femmes et se fait par portage sur la tête (jusqu'à 40 litres). La pénibilité et le faible volume de ce mode de transport rendent insupportable l'utilisation des pompeséloignées des points d'utilisation. Au-delà de 200 m en moyenne, le taux d'utilisation de la pompe chute sensiblement.


La participation des femmes aux systèmes de gestion est variable selon les Régions. La gestion des pompes est strictement réservée aux hommes dans la Région de Koulikoro. En revanche, les femmes participent souvent à la gestion des pompes dans la Région de Ségou. Mais d'une manière générale, la participation effective des femmes est faible, limitée aux fonctions de surveillance et d'entretien. Or l'enquête précitée montre qu'elle est un gage de meilleure efficacité. En effet, parmi les structures traditionnelles de gestion, celles qui ont la plus grande proportion de cas de gestion efficace (31 %), sont celles où des femmes figurent parmi les responsables.

Lors de l'enquête sur les moyens d'exhaure, les souhaits des femmes en matière d'aménagements de points d'eau ont été voisins de ceux des hommes ; par contre, certaines particularités et priorités ont été citées par les femmes seulement [SDM/SOC/3]:

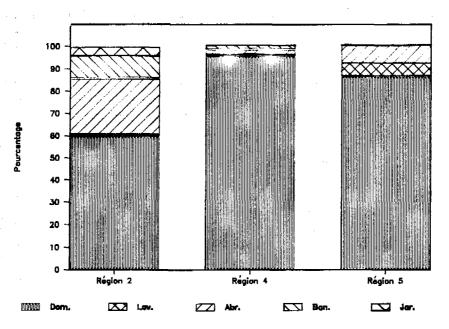

- méfiance vis à vis des aménagements lourds et coûteux,
- priorité à la proximité des pompes qui fournissent l'eau pour les usages domestiques,
- priorité aussi à l'eau pour la petite irrigation (génératrice de revenus, ceux du maraîchage notamment souvent contrôlé par les femmes),
- goût de l'eau de boisson et qualité pour le lavage.

Figure 3.3 - USAGES DE L'EAU

TAUX DE FRÉQUENCE D'UTILISATION DE L'EAU (suivant les usages)

USAGES DE L'EAU CLASSÉS PAR ORDRE D'IMPORTANCE

Les femmes jouent ainsi, dans la mesure où elles peuvent effectivement l'exercer, un rôle positif de prudence économique et de promotion de l'usage de l'eau pour les usages domestiques (hygiène). Elles se montrent plus pragmatiques et entreprenantes et plus enclines a participer financièrement. Elles souhaitent souvent exercer des responsabilités dans les comités de gestion [SDM/SOC/3].

3.2.4. Présence et rôle de l'Administration et des projets

Tous les départements techniques de l'Etat (Chapitre 2) interviennent dans le milieu rural à divers titres par le canal de leurs structures décentralisées.

En ce qui concerne l'Eau, la Direction Nationale de l'Hydraulique et de l'Energie a un rôle prépondérant qui consiste actuellement à :

- programmer la création de nouveaux points d'eau et à en assurer la réalisation,
- veiller à la pérennité des points d'eau, notamment à leur gestion et à leur entretien, plus particulièrement à l'approvisionnement en pièces détachées de pompes, et à la qualité de l'eau,
- susciter la constitution de groupements ou d'associations capables de gérer les points d'eau,
- veiller à l'animation de ces groupements ou associations et à la formation de leurs responsables.

Ainsi, le rôle de la DNHE est plus étendu que le champ de ses attributions (Chapitre 2).

En pratique, l'Administration éprouve des difficultés dans l'accomplissement de ses tâches d'organisation du monde rural et les délègue le plus souvent aux organismes régionaux de développement, aux projets en exécution ou aux ONG.

L'enquête sur les moyens d'exhaure a montré que, dans l'ensemble, avec des nuances pour la Région de Ségou, l'assistance au développement dans les zones enquêtées est partielle, légère ou absente, en particulier en matière de promotion des organisations rurales et de formation de leurs responsables. Ce constat porte à la fois sur l'assistance de l'Administration et sur celle des projets. Mais la distinction entre services administratifs et projets échappe souvent aux villageois.

En ce qui concerne les points d'eau, l'Administration locale se borne le plus souvent à avertir la DNHE en cas de panne de pompes.

Les projets qui interviennent dans le Secteur de l'Eau sont d'une grande diversité. La plupart sont gérés par la DNHE, mais ceux qui ont un objectif de développement rural ou pastoral sont gérés par le ministère de l'Agriculture ou par le ministère de l'Environnement et de l'Elevage.

Ils sont financés par des aides bilatérales, des organisations internationales ou des ONG. Comme dans bien d'autres pays, l'appui financier est déterminant dans la réalisation d'actions dont l'objectif est d'ordre social (hydraulique villageoise) et dont la rentabilité financière n'est pas prioritaire.

De plus, les projets fournissent la part essentielle de l'assistance technique, particulièrement importante dans ce secteur qui requiert des compétences souvent très spécifiques et un effort soutenu de formation. Mais l'assistance technique disparaît avec la fin de la phase d'investissement, souvent avant que la prise en charge des points d'eau par les comités de gestion soit effective.

L'aménagement de points d'eau est une activité qui retient souvent l'attention des ONG, que leurs moyens soient relativement importants (par exemple :Association Française des Volontaires du Progrès - AFVP) ou plus modestes (comités de jumelage). La souplesse d'action et la légèreté des dispositifs d'intervention des ONG se prête bien à des réalisations de ce genre, mais l'inexistence de coordination de ces actions pose toujours un problème ainsi que parfois la qualité technique des ouvrages (Chapitre 2). On peut cependant noter un progrès dans ce domaine; notamment les agences internationales de coopération tendent de plus en plus à associer des ONG à leurs projets.

3.2.5. Productions et revenus

Les productions rendues possibles ou améliorées par la disponibilité des ressources en eau proviennent de :

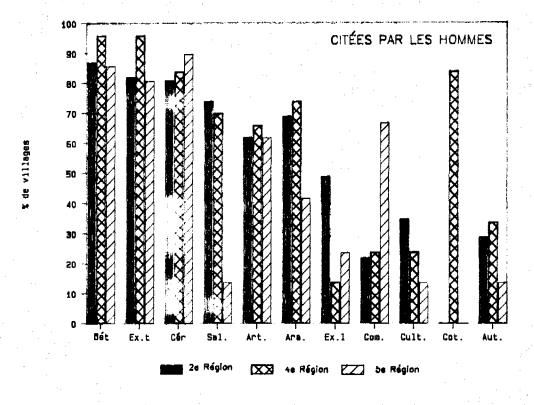
- l'élevage, détaillé au Chapitre 6,
- l'agriculture irriguée, détaillée au Chapitre 7.

Selon les résultats de l'enquête sur les moyens d'exhaure des villages, les sources de revenu monétaire citées par les hommes et par les femmes (Figure 3.4) sont classées par ordre d'importance décroissante dans le tableau 3.5.

Dans d'autres Régions (en particulier Kayes), les revenus monétaires sont souvent liés aux activités minières (orpaillage) et à l'émigration (envoi de mandats ou de fonds pour une réalisation collective : école, puits,..).

Les céréales considérées ici sont généralement irriguées dans les grands périmètres (riz dans la région de Ségou et de Mopti surtout) à partir des eaux de surface pérennes tandis que les autres productions commercialisées génératrices de revenus monétaires obtenues à partir d'eaux de surface non pérennes ou d'eaux souterraines sont essentiellement des cultures maraîchères.

Le tableau 3.5 montre également que :


- la vente du bétail figure en général parmi les principales sources de revenu,
- l'importance de l'irriguation pour les cultures maraîchères est très variable selon les Régions, mais placée en tête plus par les femmes que par les hommes.

Dans la zone d'enquête, l'agriculture irriguée est encore pratiquée le plus souvent à partir de ressources en eau ponctuelles (puits traditionnels, puisards, marigots, mares temporaires) et avec des techniques traditionnelles (Chapitre 7). Elle ne donne lieu qu'à une production annuelle de fin d'hivernage et de début de saison sèche. Très inégalement répartie sur le territoire national, elle est largement pratiquée dans la Région de Koulikoro (77 % des villages enquêtés) et surtout par des femmes.

Ainsi s'explique que les enquêtes sur les moyens d'exhaure fassent apparaître la vente des légumes parmi les revenus importants générés par les femmes, surtout dans la Région de Koulikoro où la micro-irrigation de type jardinage est très répandue.

Tableau 3.5. - Sources de revenu monétaire des villages enquêtés (hommes et femmes) classées par ordre d'importance

1	Revenus généré s p les hommes	par	Revenus générés (Pas de réponse	-
2e Région (Koulikoro)	4e Région (Ségou)	5e Région (Mopti)	2e Région (Koulikoro)	4e Région (Ségou)
1. <u>Bétail</u>	1. Exode temp.	1. Céréales	1. Cult.mara.	1. <u>Bétail</u>
2. Exode temp.	2. <u>Bétail</u>	2. <u>Bétail</u>	2. Exode temp.	2. Artisanat
3. Céréales	3. Coton	3. Exode temp.	3. Céréales	3. Commerce
4. Salar.agr.	4. Céréales	4. Commerce	4. Arachide	4. Cult.mar.
5. Arachide	5. Arachide	5. Artisanat	5. Artisanat	5. Exode temp.
6. Artisanat	6. Salar.agr.	6. Arachide	6. <u>Bétail</u>	6. Céréale
7. Exode long	7. Artisanat	7. Exode long	7. Exode long	7. Arachide
8. Commerce	8. <u>Cult.mara.</u>	8. Cult.mara.	8. Commerce	8. Coton
9. Cult.mara.	9. Commerce	9. Salar.agr.	9. Salar.agr.	
10. Autres	10. Exode long	10. Autres		
	11. Autres			

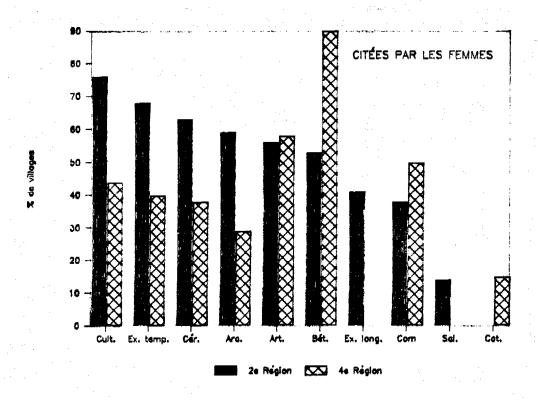


Figure 3.4 Sources de revenu monétaire classées

3.2.6. Difficultés et contraintes

Certaines des difficultés et contraintes qui affectent l'organisation du monde rural sont de caractère général, d'autres sont plus spécifiques. Elles sont récapitulées dans le tableau 3.6 ci-dessous.

Tableau 3.6 - Difficultés et contraintes d'organisation du milieu rural

	Difficultés et contraintes générales	Difficultés et contraintes spécifiques
1. Difficultés et contraintes sociales	- Difficulté d'insertion des structures modernes de déve- loppement dans le tissu so- cial traditionnel	- Séparation des fonctions et intérêts entre groupes sociaux : notables, hommes, femmes, classes d'âge, etc
	- Insuffisance d'information des villageois	- Insuffisance de la partici- pation des organisations villageoises à la concep- tion, à l'exécution et au suivi des projets de dé- veloppement
2. Difficultés et contraintes techniques	- Insuffisance de formation de base Comités villageois de gestion des points d'eau	- Insuffisance de formation technique à la réparation des pompes et à la ges- tion des points d'eau
	- Difficulté d'évaluation de l'efficacité des organisa- tions villageoises	 Faible rentabilité d'un réseau d'entretien et d'approvisionnement en pièces détachées Insuffisance de l'éducation sanitaire
3. Difficultés et contraintes juridiques	- Interférence entre législa- tion et règlementation mo- dernes et droit coutumier	- Statut foncier tradition- nel (appropriation des pâ- turages et des points d'eau)
4. Difficultés et contraintes économiques	- Insuffisance des moyens de suivi et de coordination des organisations villa- gesoises	- Dispersion des organisa- tions villageoises sur l'ensemble du territoire et difficultés d'accès

Les contraintes propres à la création de nouveaux points d'eau villageois et pastoraux ou de nouveaux ouvrages d'irrigation sont détaillées aux Chapitres 5, 6 et 7.

3.3. IMPACT DE L'EAU SUR LE DEVELOPPEMENT

L'impact de la disponibilité en eau sur le développement peut être apprécié au niveau des villageois selon les critères principaux suivants :

- élévation du revenu et de la valeur ajoutée,
- amélioration du niveau de santé et des conditions de vie en milieu rural,
- frein de l'exode rural.

3.3.1. Revenu et valeur ajoutée

L'évaluation financière ou économique des ouvrages d'exploitation des eaux est évidemment à faire dans chaque cas particulier en fonction des conditions physiographiques et socio-économiques locales.

Dans le cas de l'hydraulique pastorale qui, avec l'irrigation ou l'arrosage, constitue la source essentielle de profit réalisé à partir de l'exploitation des eaux, un aménagement hydraulique peut se justifier économiquement par la valeur des gains en poids vif ainsi obtenus pendant la saison chaude et sèche.

La rentabilité des cultures irriguées est souvent difficile à atteindre. Elle nécessite un coût relativement bas de l'eau ou bien des productions de forte rentabilité avec marché proche (Annexe 4 et chapitre 7). Dans bien des cas, sauf subvention au moins des investissements initiaux par les projets, le profit monétaire agricole sera peu important pour les utilisateurs du moins au début de la mise en valeur. Seules les actions de conservation des eaux et des sols peuvent amener un profit car nécessitant un faible investissement financier.

Il ne faut cependant pas perdre de vue que le niveau de vie ne dépend pas uniquement du revenu monétaire. Il dépend aussi de la santé, du degré de pénibilité des travaux quotidiens (pour les femmes en particulier) et de la sécurité des ressources (diversification des productions autoconsommées, disponibilité en eau pour les usages domestiques et le bétail).

De ce point de vue, l'impact d'une meilleure disponibilité en eau ne peut être que largement positif surtout si cette amélioration est accompagnée d'actions de sensibilisation, d'information et de formation nécessaires pour que le monde rural soit en mesure de prendre en main son propre développement.

3.3.2. Santé

Le Plan Quinquennal 1987-91 [3-8] part du constat que la situation sanitaire au Mali se situe à un niveau très bas, même si on la compare à la moyenne africaine, et souligne la nécessité de faire appel dans ce domaine à une participation effective des populations en matière d'alimentation et d'hygiène. L'un des 3 objectifs stratégiques complémentaires du Plan (Chapitre 1) "Couvrir les besoins de base des populations" implique notamment un élargissement de l'accès à l'eau potable.

On admet généralement que le niveau sanitaire et la disponibilité en eau potable sont liés⁽¹⁾. Les observations de terrain confirment cette relation, avec quelques nuances.

Une analyse [3-9, 3-10] des bénéfices socio-économiques résultant de l'installation de pompes manuelles dans les communautés villageoises du cercle de Kolokani, à la suite d'une enquête effectuée en 1984 et regroupant des médecins, infirmières, ingénieurs sanitaires et agronomes, a mis en lumière les points suivants en comparant notamment la situation sanitaire et alimentaire dans des villages pourvus de points d'eau modernes et des villages pourvus de points d'eau traditionnels:

- dans les villages (au moins dans ceux qui ont été enquetés), l'eau consommée est contaminée, même lorsqu'elle provient de la pompe. Cette contamination vient surtout des conditions de transport, de stockage et de manipulation; les diarrhées et les troubles parasitaire sont aussifréquents dans les villages équipés de pompes que dans ceux qui n'en ont pas car les villageois continuent de s'alimenter ou de fréquenter les points d'eau traditionnels, y compris les marigots;
- le niveau de santé est cependant supérieur dans les villages munis de pompes bien que pour des raisons indirectes: les femmes dont les corvées d'eau sont allégées, ont un meilleur état général, ce qui a une influence favorable sur la santé des enfants [3-9];
- la disponibilité de l'eau tout au long de l'année est perçue par certaines familles comme un facteur d'hygiène et de bien-etre [3-10], mais le plus souvent les habitudes persistent et le manque d'hygiène est tel que la qualité initiale de l'eau pompée se dégrade rapidement;

Par contre, récente enquête effectuée en 2e, 4e et 5e Régions montre que la plupart des villageois ne font pas aisément le lien entre la qualité de l'eau et le niveau de santé. Mais il serait nécessaire de préciser cette observation par des enquêtes similaires dans des zones où des projets d'hydraulique villageoise ont mené des actions d'éducation sanitaire.

D'une manière générale, la disponibilité en quantité suffisante d'eau potable constitue, pour l'amélioration de l'hygiène et de la santé, une condition nécessaire mais non suffisante. Un effort considérable et de longue haleine reste à faire pour parvenir à modifier les habitudes et les comportements vis-à-vis de l'eau, l'une des premières conditions étant de coordonner les programmes d'éducation sanitaire et de soins de santé primaires et les programmes d'hydraulique villageoise qui devraient comporter également un important volet d'assainissement rural.

⁽¹⁾ Le bulletin OMS 63 (1985) montre que la réduction de la morbidité liée à la pollution de l'eau est obtenue dans 16 % des cas par la fourniture d'eau potable (qualité), dans 25 % des cas par la disponibilité de l'eau (quantité), dans 37 % des cas par l'ensemble des critères qualité + quantité et dans 22 % des cas par l'évacuation des excréta (assainissement).

3.3.3. Conditions de vie en milieu rural

a) Autosuffisance et sécurité alimentaires

L'autosuffisance et la sécurité alimentaires constituent l'objectif essentiel du Plan.

En raison de l'importance des céréales dans la ration alimentaire moyenne des populations maliennes, l'autosuffisance alimentaire s'exprime essentiellement en termes de production céréalière. Sauf exception, la seule céréale irriguée est le riz, essentiellement à partir d'eaux superficielles pérennes, souvent en submersion contrôlée.

La riziculture à partir d'eau de surface non pérenne ou d'eau souterraine existe, mais sa contribution à la production nationale est encore négligeable. Son impact ne peut devenir appréciable qu'au plan local (par exemple, en certains points de semi-sédentarisation dans les Régions de Gao ou Tombouctou où des projets ont été conçus dans ce sens) ou au plan familial dans des cas particuliers.

Le rôle des cultures irriguées doit cependant être considéré dans le cadre de la sécurité alimentaire prise au sens large et selon les critères définis par la FAO (1983):

- disponibilités suffisantes et adéquates en aliments de base,
- stabilité de ces disponibilités dans le temps,
- accès économique de la population à ces aliments de base.

La sécurité alimentaire ainsi élargie peut et doit être considérée au plan local comme au plan national.

Les cultures irriguées à partir d'eaux de surface non pérennes ou d'eaux souterraines peuvent ainsi contribuer à la sécurité alimentaire de telle zone du pays ou de tel groupe social, moins en lui apportant directement les aliments de base qu'en lui procurant, par un revenu monétaire, les moyens de les acquérir.

Il faut cependant que de telles productions trouvent un marché rémunérateur et relativement stable.

La sécurisation des activités d'élevage, grâce au développement des points d'eau pastoraux ou villageois, est aussi de nature à contribuer à la sécurité alimentaire, d'une part en procurant des revenus d'appoint et des ressources négociables en cas de crise, d'autre part en améliorant directement, pour l'autoconsommation, la qualité nutritionnelle de la ration alimentaire.

Enfin, des actions de conservation des eaux et des sols peuvent contribuer à l'augmentation des productions pluviales et, par là-même, à celle du niveau d'autosuffisance et de sécurité alimentaires.

b) Environnement et aménagement du territoire

Les deux objectifs fondamentaux du Plan sont d'une part l'amélioration du degré d'autosuffisance et de sécurité alimentaire, d'autre part la lutte contre la sécheresse et la désertification. Le Plan précise qu'il s'agit, en la matière, de modifier les interventions et les comportements humains dans le sens d'une meilleure exploitation, plus rationnelle, des ressources naturelles.

Il s'agira notamment de mettre en valeur les eaux de surface non pérennes, par exemple en vue de l'abreuvement des troupeaux et d'une exploitation rationnelle des pâturages (surcreusement de mares) ainsi que les eaux souterraines pour des plantations d'arbres (pépinières) dans le cadre du Plan forestier.

Mais, d'une manière plus générale, il y a lieu de mettre à profit les eaux pluviales en réduisant le ruissellement et l'érosion des sols et en augmentant l'infiltration dans les terres cultivées ou cultivables et d'augmenter ainsi les rendements en céréales [SDM/IRG/1].

La nécessaire prise de conscience par les paysans du problème de l'érosion de leurs sols et de l'utilisation du ruissellement des eaux de pluie sera relativement longue au Mali où la densité d'occupation des sols est généralement moindre que dans d'autres pays sahéliens, au Burkina Faso par exemple.

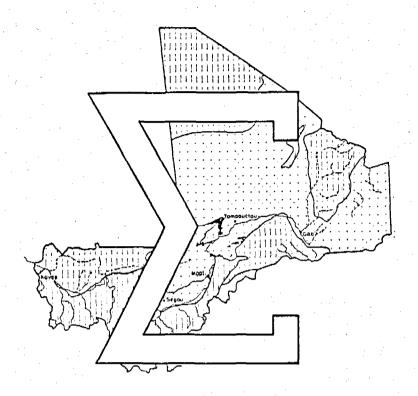
Depuis 1984, des actions expérimentales et de démonstration ont été entreprises par la Compagnie Malienne de Développement des Textiles (CMDT). L'approche retenue est celle de l'aménagement de terroir qui s'inscrit bien dans la perspective des expériences déja menées au Burkina Faso [SDM/ECO/2].

De l'expérience malienne [3-7], il ressort que :

- la mise en oeuvre de l'approche globale "Aménagement de terroir" est délicate (cas de KANIKO KOUTIALA) car les travaux collectifs profitent d'abord au groupe de propriétaires du sous-terroir aménagé et il n'est pas garanti pour chacun que l'aménagement portera sur tout le terroir;
- la mise en défens de parcelles boisées est difficilement respectée;
- il est tout aussi difficile, en raison des variations interannuelles de pluviosité, de mettre en évidence l'augmentation des rendements agricoles dûe aux travaux de conservation des eaux et des sols. Néanmoins, l'amélioration est souvent assez marquée pour retenir l'attention des agriculteurs et des éleveurs;
- en ce qui concerne le coût des aménagements (par exemple, les diguettes réalisées à IN TADENY), l'investissement initial est bas (17.125 F.CFA/ha en 1986) et l'entretien peut se faire avec un outillage courant et la main-d'oeuvre familiale.

Lorsqu'elles sont réalisées avec le concours des villageois, avec un coût d'opportunité peu élevé de la main-d'oeuvre, et sous réserve d'un entretien régulier qui assure la pérennité des ouvrages, les actions de conservation des eaux et des sols semblent se justifier au seul plan financier, sans autre justification économique plus large.

Cependant, il est clair que ces expériences sont encore trop récentes au Mali et n'offrent qu'une base étroite pour des prévisions. Il y a donc lieu de poursuivre et de développer dans d'autres régions les expérimentations-démonstrations menées jusqu'à présent [SDM/IRG/1]. Il faudra par la suite analyser et autant que possible systématiser leurs résultats, et notamment les actions pertinentes dans le tissu social existant, pour susciter la motivation des paysans intéressés (Fiche de projet A11, Chapitre 9).


c) Evaluation de l'impact de l'eau sur le développement

Comme on a pu l'observer, les effets de l'eau sur le développement ne peuvent se limiter aux seuls bénéfices économiques directs, souvent insuffisants pour justifier des investissements relativement importants. Il convient de rappeler que, même s'ils sont difficilement quantifiables, les progrès en matière de santé et le maintien des populations en milieu rural constituent des bénéfices substantiels non seulement au plan social, mais aussi au plan économique.

CHAPITRE 3

Références bibliographiques hors projet

- [3-1] Ministère du Plan Recensement général de la population Décembre 1976-Résultats définitifs,
- [3-2] Ministère du Plan/PNUD Recensement général de la population et de l'habitat (du 1 au 14 Avril 1987) Résultats provisoires (Juillet 1987).
- [3-3] Enquête démographique et de santé au Mali 1987 (Centre d'études et de recherches sur la population pour le développement Institut du Sahel Demography and health Surveys Institute for resource development Westinghouse Janvier 1989.
- [3-4] CNAUR Rapport de campagne 1988-89; perspectives 1989 Cellule de prévision Novembre 1988.
- [3-5] Banque Mondiale Population growth and policies in Sub-Saharian Africa-1986.
- [3-6] FAO Revue du secteur agricole 1987.
- [3-7] Le Sahel en lutte contre la désertification (Programme Allemand CILSS-GTZ R.R. ROCHETTE et coll.) 1989.
- [3-8] Plan quinquennal de développement économique et social 1987-1991 Vol 1-Le diagnostic de la situation socio-économique et les grandes orientations (1988).
- [3-9] Projet MLI/82/005 Rapport de mission Dominique ROBEZ-MASSON Mai 1984.
- [3-10] Projet MLI/82/005 Rapport de mission Brigitte GENET 1984.
- [3-11] Projet d'hydraulique villageoise Mali Aqua Viva: rapport d'exploitation des enquêtes de programmation et rapport de fin de campagne 1988-89-BURGEAP-DNHE-CCCE Novembre

DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 4

RESSOURCES EN EAU ET MODES D'EXPLOITATION

TABLE DES MATIERES

1 1 1 1 1	🎜 in the contract of the cont	
4.1.	INTRODUCTION	1
4.2.	RESSOURCES EN EAU METEORIQUES	2
4.3.	RESSOURCES EN EAU DE SURFACE	4 4 6 8
	4.3.2. Ressources non pérennes	9 10 11
4.4.	4.4.1. Définition et localisation des aquifères	12 14 16 18 20
· · · · · · · · · · · · · · · · · · ·	4.4.3. Ressources disponibles	20 20 20
	4.4.4.1. Types de point d'eau et moyens d'exhaure	30
4.5.	4.5.1. Contraintes liées aux ressources	32 32 33 35 36
	I OGRAPHI E	37
4.1.	Données statistiques sur les précipitations régionales (1936-1985)	4
4.2.	Données caractéristiques sur l'écoulement des fleuves Sénégal et Niger	6
4.3.	Valeurs moyennes en m³/s des composantes de l'écoulement aux stations hydrométriques	7
4.4.	Volume écoulé estimé pour une année de pluviométrie moyenne	10

4.5.	Principaux aquifères du Mali	12
4.6a b	Données statistiques sur les forages	14 16
4.7.	Pourcentage de forages par tranche de débit	18
4.8.	Ressources disponibles en eau souterraine, estimées pour les principaux aquifères	22
4.9.	Débits ponctuels exploitables estimés dans les aquifères fissurés à ressources renouvelables	26
4.10	.Débits maxima ponctuels exploitables sur les réserves	27
4.11	Exploitation des eaux souterraines estimée pour 1989 par Région selon l'usage	31
4.12	Exploitation des eaux souterraines estimée pour 1989 par aquifère selon l'usage	32
FIGU	RES	
4.1.	Carte des ressources en eau	3
4.2.	Réseau hydrographique et stations hydrométriques des bassins versants amont du Sénégal et du Niger	5
	Types d'aménagement selon les zones climatiques	
4.4.	Secteurs hydrogéologiques	13
4.5.	Densité de forages par 1000 km ²	15
4.6.	Profondeur moyenne du niveau statique	17
4.7.	Exemples d'évolution piézométrique en fonction de la pluie	19
4.8.	Débit moyen des forages productifs	21
4.9.	Pourcentage de forages à débit supérieur à 5 m³/h	24
4.10	Conductivité moyenne des eaux souterraines	25
4.11	Ressources en eau souterraine	28
4.12	Recharge des nappes par les précipitations	29
4.13	Exploitabilité des eaux souterraines	34

CHAPITRE 4

RESSOURCES EN EAU ET MODES D'EXPLOITATION

4.1. INTRODUCTION

L'eau est indispensable à tout développement, d'abord pour satisfaire les besoins humains, ensuite pour mener toutes sortes d'activités: agriculture, élevage, industrie, artisanat. Elle est présente à peu près partout mais se caractérise par une disponibilité et une distribution irrégulières dans l'espace comme dans le temps. Aussi, ces deux facteurs conditionnent-ils fortement ses utilisations et ses modes d'exploitation. Certaines ressources en eau peuvent être utilisées directement ou exploitées par des aménagements simples; d'autres par contre nécessitent des travaux souvent coûteux pour les rendre d'abord exploitables et les exploiter ensuite avec cependant une sécurité accrue quant à leur pérennité.

Le Mali s'étendant des zones de climat soudanais aux zones désertiques, la distribution des ressources en eau est très irrégulière. Dans les régions Ouest et Sud qui bénéficient d'une pluviométrie élevée, les eaux de surface sont abondantes et permanentes et les eaux souterraines accessibles à faible profondeur. Elles se réduisent progressivement vers le nord où les précipitations deviennent plus faibles, l'écoulement de surface intermittent et le niveau piézométrique des nappes plus profond. Dans les zones nord-sahélienne et désertique qui couvrent la moitié nord et l'est du Mali, la pluviométrie devient extrêmement faible et aléatoire, n'entraînant que de rares écoulements sporadiques et des nappes superficielles localisées. Ces régions disposent par contre d'importantes réserves d'eau souterraine ancienne accumulées lors des dernières phases humides du Quaternaire dans les vastes cuvettes sédimentaires perméables qui caractérisent ces zones.

Les précipitations qui sont à l'origine même de la ressource en eau varient fortement suivant les années et les régions et ont une période d'occurence limitée à quelques dizaines de jours par an durant la saison d'hivernage.

Seuls les grands axes hydrauliques constitués par les fleuves Niger et Sénégal et quelques uns de leurs affluents dont les secteurs amont bénéficient d'une pluviométrie élevée, sont pérennes. Dans le reste du Mali, les eaux de surface ne sont pas pérennes et ne sont naturellement disponibles et exploitables que durant les mois d'hivernage et, en zone sahélienne, seulement pendant de brèves périodes suivant les épisodes pluvieux. Elles peuvent par contre être contrôlées localement par de petits aménagements afin d'étendre leur période d'utilisation.

Par contre, les eaux souterraines sont naturellement régularisées à l'échelle saisonnière et interannuelle et présentent surtout l'avantage d'être accessibles partout, certes en quantité et qualité variables. Ainsi, dans les aquifères semi-continus et discontinus de l'ouest et du sud du Mali, les ressources renouvelables bien qu'elles ne représentent qu'une faible fraction des ressources en eau météorique et de surface (ce qui constitue un facteur limitant), sont exploitables presque partout et assurent, d'une manière permanente, des débits suffisants pour des actions de développement à l'échelle locale ou villageoise.

Les différents types de ressource en eau (pluie, eau de surface, eau souterraine) sont interdépendants. La pluie génère l'écoulement de surface et recharge les nappes, lesquelles peuvent être, suivant les zones pluviométriques, drainées par le réseau hydrographique (zone soudanienne) ou au contraire réalimentées par l'infiltration du ruissellement (zone sahélienne et sub-désertique). Les composantes de ce potentiel hydraulique présentent aussi des caractéristiques spécifiques quantàleur disponibilité dans le temps et à leur distribution dans l'espace qui conditionneront les solutions techniques optimales à retenir pour leur mise en valeur.

Le Schéma Directeur de mise en valeur des ressources en eau prend en compte cette interdépendance des différents types de ressources afin de déterminer et de proposer la meilleure adéquation entre la ressource et son exploitation.

La figure 4.1 ci-après est une illustration de l'interdépendance de la pluviométrie, des eaux de surface et des eaux souterraines et montre que la combinaison de ces trois éléments permet de mettre en évidence un zonage schématique des ressources en eau, caractéristique du Mali.

4.2. RESSOURCES EN EAU METEORIQUES

Le régime climatique du Mali est caractérisé par l'alternance d'une saison sèche dont la durée varie de 5 mois dans la partie sud du pays à 9 mois au Nord, et d'une saison humide ou hivernage, (pluies de type mousson) qui débute en mai - juin et se termine en septembre - octobre. Les précipitations décroissent du Sud vers le Nord, de 1400 mm dans la région de Sikasso jusqu'à moins de 50 mm dans le désert de l'Azaouad (figure 4.1.).

Quatre zones climatiques se succèdent du sud au nord :

- la zone soudanienne avec des précipitations supérieures à 1.200 mm (pouvant dépasser 1.500 mm) et limitée approximativement à la latitude 12°N,
- la zone soudano-sahélienne entre les isohyètes 1.200 et 700 mm et limitée au nord par le 14ème parallèle,
- la zone sahélienne avec des précipitations comprises entre 700 et 200 mm qui s'étend sur près du quart de la superficie totale du Mali entre le 14ème et le 16ème parallèle,
- la zone sud-saharienne ou désertique avec des précipitations épisodiques totalisant moins de 200 mm de pluie annuelle.

Le régime pluviométrique du Mali, de type intertropical continental, est caractérisé par une distribution très irrégulière des précipitations dans l'espace, par des épisodes pluvieux violents sous forme de grains localisés et par une forte variabilité interannuelle. Les paramètres statistiques calculés à partir des hauteurs pluviométriques pondérées par Région pour la période 1936-1985 (tableau 4.1 ci-après) mettent bien en évidence cette irrégularité [4-1].

.

Ch.4

Région Administrative	Moyenne Maximum (mm) (mm)		Minimum (mm)	Ecart-type (mm)	Tendance (mm/an)	
1. Kayes	893	1275	555	152	-5,3	
2. Koulikoro	804	1135	530	141	-2,6	
3. Sikasso	1091	1449	673	157	-5,8	
4. Ségou	666	907	457	102	-3,4	
5. Mopti	556	842	364	109	-2,3	
6. Tombouctou	208	348	96	58	-2,0	
7. Gao	205	346	100	63	-1,6	

La tendance interannuelle moyenne définie sur l'ensemble de la période 1936 – 1985 montre, globalement, une diminution générale des précipitations. En valeur absolue, la baisse la plus marquée est enregistrée dans la Région de Sikasso, la plus arrosée du Mali. En valeur relative par rapport à la moyenne ce sont les régions nord-sahéliennes, en particulier l'est du Mali (Mopti-Gao), qui sont les plus affectées.

En fait, cette évolution des précipitations est à nuancer, car elle est la résultante de deux périodes de tendance opposée :

- de 1936 à 1969, une période humide avec une pluviométrie supérieure à la moyenne,
- à partir de 1970, une période de sécheresse chronique avec une décroissance continue de la pluviométrie qui s'est traduite par un recul des isohyètes de près de 200 km vers le Sud (figure 4.1.) et des déficits pluviométriques pouvant atteindre plus de 30% (en 1970, 1972-73, 1977, 1984) par rapport à la moyenne 1936-1970.

4.3. RESSOURCES EN EAU DE SURFACE

4.3.1. Eaux de surface pérennes

Elles sont représentées par l'écoulement des fleuves Niger et Sénégal et de leurs principaux affluents dans les secteurs amont de leur bassin versant: Falémé, Bafing, Bakoye et Baoulé pour le Sénégal, Sankarani et Bani (avec ses affluents Baoulé, Bagoe et Banifing) pour le Niger et par la zone lacustre du delta intérieur.

Le réseau d'observation hydrologique comporte 85 stations limnimétriques dont 42 sont aussi équipées d'une plateforme de collecte et de transmission des données par satellite. Elles se répartissent entre les régions ouest et sud du Mali où elles contrôlent les écoulements des branches amont des fleuves Niger et Sénégal et de leurs principaux affluents pérennes et le long du cours moyen du Niger: delta intérieur et "boucle" du fleuve entre Diré et Ansongo, à la frontière nigérienne.

4.3.1.1. Régions ouest et sud du Mali

Les débits mesurés aux stations hydrologiques des régions ouest et sud du Mali (Figure 4.2) montrent une grande variabilité saisonnière et annuelle liée au régime pluviométrique de type tropical et à la faible capacité de régularisation des aquifères. Les caractéristiques physiques propres aux différents secteurs des bassins versants-morphologie, géologie notamment – ainsi que leur superficie entraînent des variations spatiales de l'écoulement qui se surimposent aux fluctuations des apports météoriques liées à l'alternance des saisons et aux cycles climatiques.

Les données caractéristiques de l'écoulement aux stations de Kayes sur le fleuve Sénégal (bassin versant de 157.400 km²) et de Koulikoro sur le fleuve Niger (bassin versant de 120.000 km²) sont représentatives des particularités du régime hydrologique des fleuves sahéliens. Les valeurs statistiques, calculées pour la période d'observation 1907-1979 [4.2], sont synthétisées dans le tableau 4.2.

Tableau 4.2. Données caractéristiques sur l'écoulement des fleuves Sénégal et Niger

Caractéristiques de l'écoulement aux stations hydrométriques	Sénégal à Kayes	Niger à Koulikoro
Ecoulement moyen annuel (m3/s et 109m3/an)	599 (18,9)	1.058 (33,3)
Lame d'eau écoulée moyenne (mm)	120	396
Ecoulement décennal année humide (m3/s)	893	1.990
Ecoulement décennal année sèche (m³/s)	364	1.080
Crue décennale (m³/s)	5.550	7.785

Les parts respectives du ruissellement et des apports souterrains dans l'écoulement de surface mesuré aux principales stations du réseau d'observation hydrologique ont été estimées par une méthode simplifiée de décomposition des hydrogrammes à partir des courbes de tarissement [HDG/NTL/15]. L'analyse a été faite pour trois périodes d'hydraulicité différente afin d'étudier les effets de la sécheresse sur les composantes de l'écoulement de surface.

Les valeurs moyennes calculées par période pour le ruissellement et pour l'écoulement de base, assimilé aux apports souterrains des aquifères, sont données dans le tableau 4.3.

Tableau 4.3. - Valeurs moyennes en m³/s des composantes de l'écoulement aux stations hydrométriques (Ecoulement total et de base, Ruissellement).

STATIONS		1960/69			1970/79			1980/87	
HYDROMETRIQUES	E.TOT.	E.BASE	RUIS.	E.TOT.	E.BASE	RUIS.	E.TOT.	E.BASE	RUIS.
SENEGAL									
Gourbassy	168	33	135	92	14	78	51	6	45
Galougo	637	166	471	361	84	277	226	43	183
Bafing Makana	362	128	234	231	76	155	144	47	97
Toukoto	100	26	74	44	7	37	19	3	16
Kabate	-	-	-	10	3 [7	9	2	7
Siramakana	58	23	35	26	3	23	12	1 1	11
Daka Seydou	280	94	186	187	64	123	152	43	109
Oualia	186	39	147	95	12	83	35	5	30
NIGER									-
Koulikoro	1640	402	1238	1257	283	974	*	*	*
Bougouni	132	53	79	80	27	53	52	13	39
Pankourou	272	100	172	118	37	81	77	18	59
Douna	616	229	387	280	102	178	155	45	110
Dioila	205	83	122	109	39	70	64	21	43
Beneni Kegny	583	153	430	282	55	227	185	38	147
Sofara	460	259	201	241	107	134	138	54	84

⁻ Données hydrométriques insuffisantes

Dans le bassin amont du Sénégal, les lames d'eau écoulées sont en moyenne de 179 mm/an pour la période humide 1960-69 (environ 18 % de la pluie) contre 54 mm/an pour la période sèche 1980-87 (7 % de la pluie). Il en est de même sur le bassin du Niger avec des valeurs plus élevées dùes à une pluviométrie moyenne supérieure (321 mm/an ou 24 % de la pluie en 1960-69 contre 144 mm/an ou 14 % de la pluie en 1980-87). Le ruissellement est de 1,5 à 9 fois plus élevé que les apports des aquifères (écoulement de base). Ce rapport est d'autant plus élevé que l'écoulement est faible, ce qui met bien en évidence la contribution réduite des aquifères à l'écoulement des fleuves dans les zones de faible pluviométrie et l'accentuation de ce phénomène durant les périodes de sécheresse.

Ainsi, à partir de 1984, l'écoulement sur certains tronçons de fleuves permanents s'est tari en fin de saison sèche: le Bani à l'aval de Douna et le Baoulé à Bougouni.

^{*} Mesures non valables car affectées par le barrage de Sélingué

4.3.1.2. Delta intérieur et Niger aval

La zone lacustre du delta intérieur couvre une superficie de près de 30.000 km² en période de crue et les années de bonne hydraulicité. Les lacs semi-permanents occupent une superficie de 15.000 km² tandis que les plaines d'inondation s'étendent sur 13.000 km² dans le secteur nord du delta et 15.500 km² dans le secteur sud.

A l'entrée du delta, le Niger se ramifie en plusieurs bras qui alimentent les chapelets de lacs de la zone lacustre. Il reçoit près de Mopti les apports du Bani qui constitue la limite méridionale de la zone lacustre.

A l'aval de Diré, le Niger amorce la partie de son cours constituant la "boucle" du fleuve à la périphérie des plaines rocheuses et ensablées du Gourma. Les zones d'inondation sont réduites à un liséré de terrasses alluviales de 10 à 30 km de largeur entrecoupé par les seuils rocheux de Tossaye et de d'Ansongo près de la frontière nigérienne.

Le delta intérieur a un rôle hydrologique très important sur le régime du cours aval du fleuve Niger. La comparaison entre les débits mesurés à l'amont du delta (stations de Koulikoro sur le Niger et de Douna sur le Bani) et ceux mesurés à Diré près de son extrémité aval montre une perte d'écoulement de l'ordre de 30 milliards de m³ (980 m³/s) en année moyenne, soit près de la moitié des apports. Ces pertes varient considérablement selon les années : 46 milliards de m³ durant l'année humide de 1969 et environ 17 milliards de m³ pour l'année sèche 1973, proportionnellement à l'extension des superficies inondées. Une autre méthode d'évaluation des pertes dans le delta intérieur du Niger a consisté à estimer les pertes par évaporation directe et par évapotranspiration à travers le couvert végétal sur des superficies délimitées à partir des images satellites [4.2]: elle a donné, pour l'année d'hydraulicité moyenne 1978, une valeur de pertes de 32,8 milliards de m³, relativement proche de celle mesurée entre l'entrée et la sortie du delta.

Les études hydrogéologiques, en particulier l'analyse des données piézométriques [HDG/NTL/9] et isotopiques [HDG/NTL/10], confirment que la recharge de l'aquifère du Continental terminal/Quaternaire par l'infiltration des eaux de surface dans le secteur du delta intérieur ne représente qu'une très faible fraction des pertes d'écoulement observées.

Des pertes, de moindre importance, sont aussi observées le long de la boucle du Niger. Elles sont estimées, en année moyenne, à 1,2 milliards de m³ (39 m³/s) entre Diré et Tossaye et à 2,7 milliards (85 m³/s) entre Tossaye et Ansongo. Tout comme dans le delta intérieur, elles trouvent leur origine principalement dans l'évaporation et l'évapotranspiration, mais elles sont beaucoup plus réduites en raison de la faible extension des surfaces inondées durant et après les périodes de crue.

4.3.1.3. Mise en valeur actuelle et projets de développement

Le potentiel en eau de surface permanente est considérable pour une pays sahélien comme le Mali et encore largement sous exploité. Toutefois, la forte réduction des débits observée durant la sècheresse des deux dernières décennies et leur grande variabilité saisonnière sont des contraintes à la mise en valeur de ce potentiel. Elle obligent à prévoir, pour les projets les plus importants, des aménagements hydrauliques onéreux afin de pallier à la faible régularisation naturelle des écoulements et pour assurer des débits et/ou des hauteurs d'eau suffisantes au niveau des sites d'utilisation.

Les barrages de retenue de Sélingué sur le Sankarani (bassin versant du Niger) et de Manantali sur le Bafing (bassin versant du Sénégal) sont principalement destinés à la production d'énergie hydroélectrique et à l'irrigation. Ils ont aussi un rôle de régulateur pour l'écoulement en aval [4.3]. Ils contribuent ainsi à la navigabilité des fleuves Niger et Sénégal et à la sécurisation de l'alimentation en eau des villes situées le long de leur cours.

Les superficies actuellement aménagées pour l'irrigation à partir de prises sur les rivières pérennes sont d'environ 190.000 ha dont 130.000 ha effectivement exploités (voir Chapitre 7). Il s'agit essentiellement de grands et moyens aménagements de plusieurs centaines à plusieurs milliers d'hectares, les périmètres de l'Office du Niger dans la Région de Ségou alimentés par les eaux dérivées au barrage de Markala étant les plus importants (près de 102.000 ha aménagés et 69.000 ha irrigués).

Plusieurs autres projets d'aménagement ontété identifiés [4.4] principalement dans le bassin du Niger (en particulier les barrages de Tala et de Djenné sur le Bani, le barrage de Tossaye sur le Niger et la remise en eau des lacs sur la bordure nord de la cuvette lacustre) qui permettraient de porter les superficies irriguées à près de 500.000 ha (prélèvements de l'ordre de 10 milliards de m³/an). Les études pour la plupart de ces projets en sont encore à un stade très préliminaire. L'assèchement de certaines rivières durant les étiages des années sèches 1983-85 oblige à revoir soigneusement ce programme d'aménagement après le traitement des données hydrologiques récentes.

Une petite irrigation s'est aussi développée ces dernières années à partir des prélèvements par motopompes sur le fleuve Niger. Les superficies concernées sont encore limitées à quelques centaines d'hectares mais pourraient être rapidement étendues, notamment à proximité des villes pour les cultures maraîchères et les vergers.

Les eaux de surface prérennes alimentent aussi les réseaux d'adduction de 10 centres urbains (voir Chapitre 5) dont Bamako et tous les chefs-lieux de Région sauf Tombouctou et Gao, représentant un prélèvement total de 8,6 millions de m³/an.

4.3.2. Eaux de surface non pérennes

Ces ressources sont particulièrement intéressantes à exploiter parce qu'elles sont présentes dans presque tout le pays, hormis les zones désertiques ensablées, mais elles ont été peu utilisées jusqu'à présent. Les ouvrages hydrauliques construits pour exploiter ces écoulements sont le plus souvent de taille modeste et concernent des petits bassins versants excédant rarement 200 km². Au-delà de cette superficie, les caractéristiques des ouvrages, notamment l'évacuateur de crues, seraient telles qu'elles nécessiteraient des moyens importants de mise en oeuvre.

Il n'y a pas eu d'inventaire exhaustif des aménagements existants au Mali. Leur nombre serait de l'ordre de 200 en 1989 dont environ 150 ouvrages encore fonctionnels [SDM/ENP/1], pour la plupart dans le pays dogon (Bandiagara).

4.3.2.1. Estimation de l'écoulement

Les données hydrométriques relatives aux petits bassins versants sont très peu nombreuses au Mali. Afin de combler cette lacune, le projet PNUD/DCTD/MLI/84-005 a lancé durant l'hivernage 1989 une campagne de mesures sur six petits barrages localisés dans la zone soudano-sahélienne avec pour objectif l'estimation du coefficient de ruissellement pour chaque épisode pluvieux et sa valeur moyenne pour toute la saison des pluies. L'interprétation de ces données ne sera toutefois disponible qu'en 1990.

En se basant sur des méthodes approchées établies pour l'Afrique de l'Ouest et le Sahel, l'écoulement annuel peut être évalué à l'aide d'abaques donnant la répartition statistique des lames écoulées d'un bassin versant en fonction de sa surface et de paramètres physiographiques simples liés à la perméabilité d'ensemble de ce bassin [SDM/ENP/2].

La crue de référence généralement choisie pour les petits aménagements est la crue décennale (engendrée par une pluie journalière de récurrence décennale), tous les autres facteurs de ruissellement étant supposés moyens (humectation de sols, forme de l'averse, végétation...) [4.5 et 4.6].

Pour les bassins versants de moins de 200 km² et dans les zones de pluviométrie inférieure à 1000 mm, tout l'écoulement se fait pendant la saison des pluies par ruissellement direct ou différé. L'écoulement de base se produit durant une partie de la saison sèche, mais n'apparaît que dans la zone soudanienne où les nappes souterraines sont sub-affleurantes dans les fonds de vallée.

Les volumes contrôlables par de petits aménagements ont été schématiquement estimés selon les zones climatiques et pour des bassins versants de 25 km² de superficie (Tableau 4.4) [SDM/ENP/4].

Tableau 4.4 - Volume écoulé estimé pour une année de pluviométrie moyenne selon les secteurs climatiques

Secteur climatique	P moy/an (mm)	Kr (%)	Le (mm)	Vol. écoulé sur 25 km² (10 ³ m³)
Subdésertique	150 - 300	5 - 7	10 - 20	250 - 500
Sahélien	300 - 700	10 - 15	30 - 100	750 - 2500
Soudano-sahélien	700 - 1100	15 - 25	100 - 200	2500 - 5000
Soudano-guinéen	1100 - 1500	25	200 - 300	5000 - 7500

P = Hauteur pluviométrique

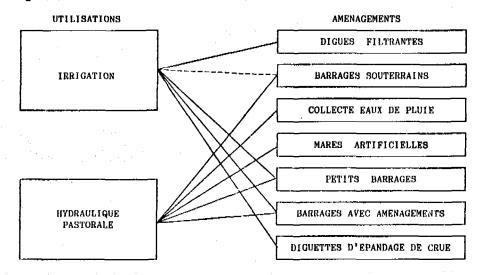
Kr = Coefficient de ruissellement

Le = Lame d'eau écoulée

4.3.2.2. Types d'aménagement

Le choix du type d'ouvrage dépend des conditions physiographiques locales: pluviométrie, topographie, géologie, géomorphologie... et de l'utilisation prévue pour les eaux contrôlées [SDM/ENP/4].

- petite retenue, mare artificielle ou citerne avec stockage total des apports ruisselés,
- retenue avec stockage partiel des apports et évacuation des débits excédentaires soit par ouvrage submersible soit par déversoir de crue,
- retenue partielle et temporaire avec contrôle des hauteurs d'eau à l'amont par digue submersible ou digue filtrante (cas des aménagements de bas-fonds en riziculture),
- autres types d'ouvrages: ponts, radiers, digues de protection et d'épandage de crues.


Le type d'ouvrage adopté oriente en général le choix du site mais il arrive que ce soit l'inverse si le site est imposé par des contraintes d'utilisation ou par le contexte géographique.

Les figures 4.3a et 4.3b ci-dessous montrent les aménagements conseillés ou déconseillés selon les zones climatiques ou selon les objectifs de développement.

AMENAGEMENTS AMENAGEMENTS DECONSEILLES ZONES CLIMATIQUES CONSETLLES DIGUETTES DIGUES FILTRANTES D'EPANDAGE DE CRUE BARRAGES BARRAGES AVEC SUBDESERTIQUE SOUTERRAINS AMENAGEMENTS COLLECTE EAUX PETITS BARRAGES DE PLUIE SAHELIENNE **MARES MARES SOUDANO-**PETITS BARRAGES Saheli enne COLLECTE EAUX DE PLUIE BARRAGES AVEC BARRAGES SOUDANO-**AMENAGEMENTS** SOUTERRAINS **GUINEENNE** DIGUETTES DIQUES FILTRANTES D'EPANDAGE DE CRUE

Figure 4.3a - TYPES D'AMENAGEMENT SELON LES ZONES CLIMATIQUES

Figure 4.3b - TYPES D'AMENAGEMENT SELON LES UTILISATIONS DE L'EAU

4.4. RESSOURCES EN EAU SOUTERRAINE

4.4.1. Définition et localisation des aquifères

Les 10 systèmes aquifères (Tableau 4.5 et Figure 4.4) correspondant aux principaux étages stratigraphiques représentés au Mali sont subdivisés en 29 unités hydrogéologiques dont les limites sont définies par des lignes de crêtes piézométriques et/ou des axes structuraux d'extension régionale. Ces unités sont elles-mêmes subdivisées en 61 secteurs hydrogéologiques homogènes (Figure 4.4).

Les aquifères du Mali sont classés en trois grandes catégories selon le mode de gisement des eaux souterraines :

- a) les aquifères généralisés, multicouches à porosité intergranulaire, sont associés aux formations détritiques peu ou non consolidées et d'origine essentiellement continentale qui se sont accumulées dans des bassins sédimentaires au Secondaire et au Tertiaire et occupent un peu plus de la moitié de la superficie du Mali;
- b) les aquifères fissurés sont caractérisés par des nappes semi-continues ou discontinues en fonction de la densité des réseaux de fracturation qui les affectent. Ils gisent dans des formations cristallines (socle) ou sédimentaires anciennes du Précambrien et du Primaire et occupent le reste de la superficie du Mali;
- c) les aquifères superficiels gisent dans des formations de recouvrement et d'altération du Quaternaire, d'extension variable et de porosité intergranulaire. Dans les zones climatiques soudanienne et soudano-sahélienne, ils sont semi-continus et constituent des systèmes bicouches avec les aquifères fissurés du substratum. Dans les zones à faible pluviométrie, les aquifères superficiels sont perchés et localisés dans les bas-fonds.

Tableau 4.5 - Principaux aquifères du Mali

Type d'aquifère	Etage stratigraphique	Code	Lithologie dominante	Super- ficie (km²)	% superf. du Mali
	Continental terminal et Quaternaire	сто-1	Argiles, argiles sa- bleuses, sables, la- térites		16
Aquifères générali-	Crétacé supérieur et Eocène inférieur	CSE-2	Calcaires, marnes, argiles, sables	138910	11
generali- sés	Continental Terminal et Continental in- calaire	CIT-3	Sables, argiles sa- bleuses, argiles	208870	17
	Continental interca- laire	CIN-4	Sables, grès, conglomérats	82320	7
				632930	51
	Primaire de Taoudenni	PRI-5	Calcaires, grès	112700	9
	Cambrien	CAM-6	Schistes, shales, calcaires, grès	66060	5
Aquifères fissurés	Infracambrien tabu- laire	1CT-7	Grès,grès schisteux, schistes	174810	14
	Infracambrien plissé et métamorphique	1CP-8	Schistes, calcaires, quartzites	97420	8
	Socle granitique et métamorphique	soc-9	Granites, grauwac- kes, micaschistes, schistes	156080	13
				607070	49
Aquifères superfi- ciels	Quaternaire	QAT-0	Argiles, sables, graviers	Dispersée	<u>-</u>

Cont. terminal/Quaternaire

Crétacé sup.∕Eocène inf.

Cont. intercalaire et terminal

Continental intercalaire

Primaire indifférencié

Cambrien

Infracambrien tabulaire

Infracambrien plissé

Socie SIGMA: SDSHY

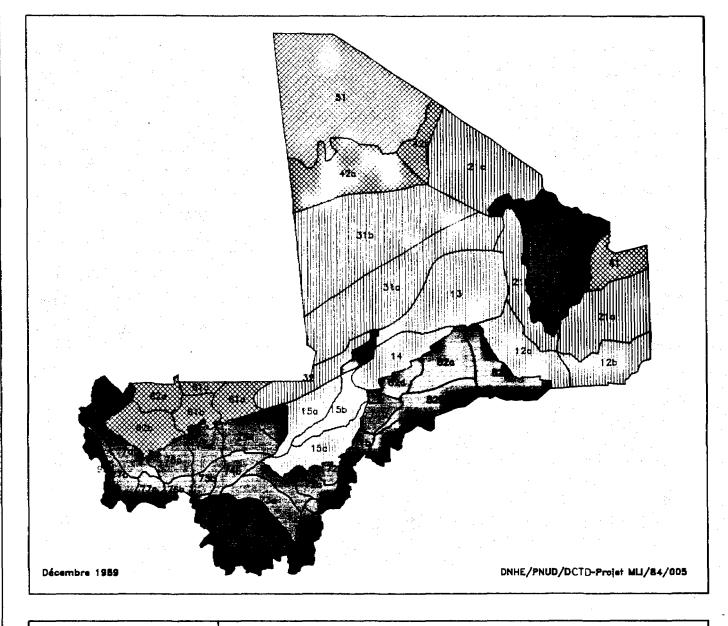


Figure 4.4

SECTEURS HYDROGEOLOGIQUES

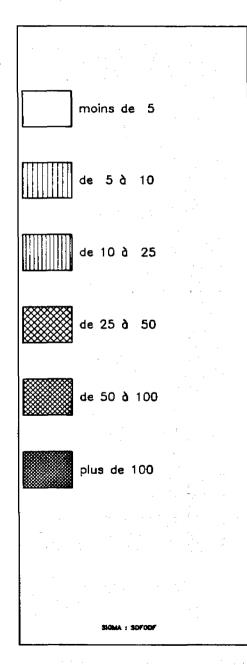
CII. 3

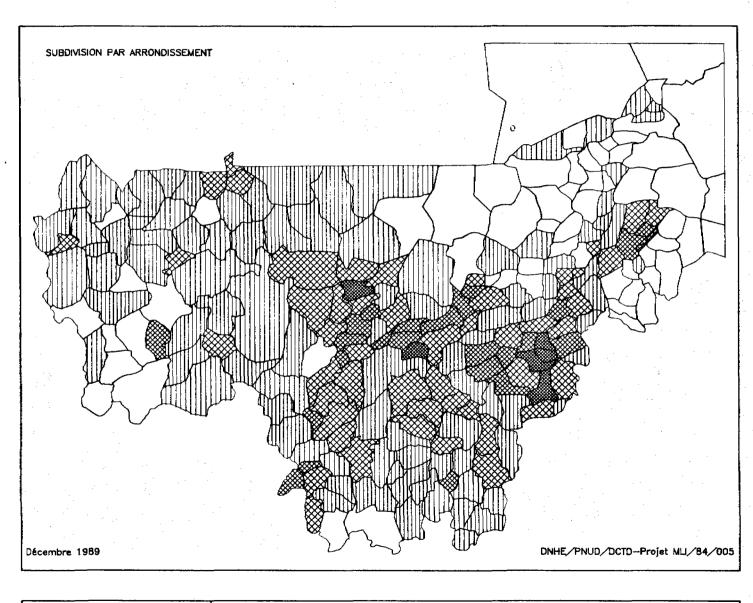
L'existence d'intrusions doléritiques en dykes ou sills pouvant dépasser 100 m d'épaisseur dans les aquifères fissurés créent des discontinuités dans l'écoulement des nappes alors que leurs épontes constituent au contraire des axes d'écoulement préférentiels.

4.4.2. Caractéristiques principales

Les dizaines de milliers de données hydrogéologiques collectées et informatisées dans les fichiers de la banque SIGMA sur les forages, les pompages d'essai, les caractéristiques hydrochimiques, isotopiques et piézométriques permettent d'obtenir des valeurs statistiques représentatives des aquifères du Mali (sauf dans l'aquifère de Taoudenni), de leur variation spatiale et de l'évolution dans le temps de certains paramètres. Les tableaux 4.6a et 4.6b donnent un aperçu synoptique de ces valeurs classées par système aquifère.

Tableau 4.6a - Données statistiques sur les forages


Système aquifère	Nombre forages		Taux de	Profond.	Débit Q	*	*
aquilere	Total	Product.	réussite %	moyenne (m)	moyen (m³/h)	forages Q > 5m ³ /h	forageв Q >10m³/h
CTQ-1	1332	1119	84	62	9,0	51	26
CSE-2	82	59	72	136	7,3	54	17
CIT-3	97	76	78	88	10,8	72	45
CIN-4	11	5	45	249	(10,4)	(60)	(60)
PRI-5	7	4	57	116	(20,4)	(60)	(60)
CAM-6	1998	899	45	57	6,3	35	17
ICT-7	6697	4751	71	63	5,6	36	13
ICP-8	339	171	50	92	7,0	50	24
SOC-9	2188	1396	64	58	5,3	34	15
TOTAL	12751	8480					
MOYENNE			66,5	62,8	6,2	38	16


Les valeurs entre parenthèses ne sont pas significatives en raison du nombre insuffisant de données.

La qualité des statistiques présentées dans ce chapitre est liée d'une part à la valeur des données mesurées sur le terrain, d'autre part au nombre de ces données. Avant de les introduire dans la Banque SIGMA, toutes les données collectées ont été vérifiées et les valeurs suspectes, aberrantes ou visiblement fausses ont été systématiquement éliminées lorsqu'elles ne pouvaientêtre corrigées. En ce qui concerne le nombre de données, le tableau 4.6a montre que, pour au moins 5 des 9 systèmes du Mali (le 10e système - QUAT - n'étant exploité que par des puits traditionnels pour lesquels peu de données sont disponibles, hormis les niveaux d'eau), le nombre de forages est suffisant pour que les statistiques soient représentatives de ces systèmes, et notamment de 4 des 5 systèmes discontinus, les systèmes généralisés ne nécessitant, par définition, que beaucoup moins de données pour que les statistiques soient tout aussi représentatives (Figure 4.5).

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Figure 4.5

DENSITE DE FORAGES PAR 1000 Km2

n. 4

Tableau 4.6b - Données statistiques sur les principaux paramètres hydrogéologiques

Système aquifère	, , ,		% forages NS ≤ 10m	Profond. venue d'eau	T moyen.	- 1 - 1		pH moyen
	Moyen	Max.	NO 3 10M	(m)			·	
CTQ-1	17,5	86,0	33	46	1,2E-3	850	5760	7,2
CSE-2	51,2	113,0	3	95	1,9E-3	2270	5950	8,0
CIT-3	44,5	92,3	2	68	7,4E-3	425(1)	13130	6,6
CIN-4	39,0	67,8	(33)	-	_	600	5150	7,5
PRI-5	12,9	34,5	(50)	58	_	(5840)	(17650)	7,8
CAM-6	14,1	77,1	35	41	2,0E-4	790	6140	7,5
ICT-7	13,6	95,0	34	47	2,6E-4	281	2156	6,8
ICP-8	39,4	96,5	16	69	2,0E-4	974	5380	6,8
SOC-9	9,5	73,0	63	46	8,6E-5	375	12600	7,2

(1) Secteur au Nord d'Araouane exclu

T = Transmissivité en m²/s

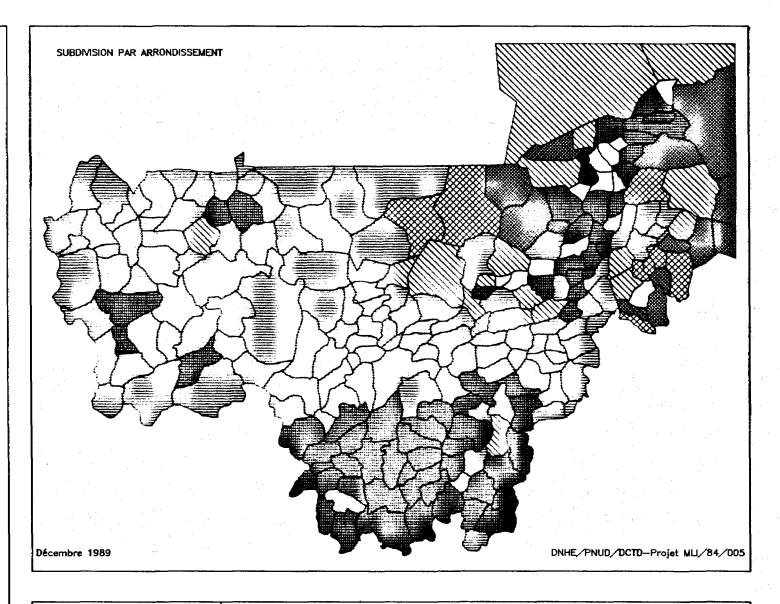
C = Conductivité de l'eau en micromhos par cm.

Les valeurs de coefficient d'emmagasinement calculées à partir des essais avec piézomètre sont trop peu nombreuses pour être réellement représentatives des différents systèmes aquifères. Elles sont en général faibles, comprises entre 10-3 et 10-4, et caractéristiques de nappes semi-captives à semi-libres dans des aquifères fissurés à double perméabilité, macro et microfissurale, et des aquifères généralisés à double porosité avec effet de drainance.

4.4.2.1. Piézométrie

La carte piézométrique du Mali [HDG/NTL/8], bien que représentant des aquifères différents et discontinus, a été établie sur la base d'un nombre de données suffisantes pour donner une image descriptive des limites des systèmes aquifères à l'échelle régionale. Elle met en évidence deux domaines piézométriques dont les caractéristiques sont liées à la topographie, à la pluviométrie et au type d'aquifère :

- un domaine à piézométrie haute sur les plateaux et collines de l'ouest du Mali où sont localisés les aquifères fissurés, et caractérisé par une recharge saisonnière,
- un domaine à piézométrie déprimée dans les plaines sahéliennes et les zones dunaires du Nord et de l'Est où sont représentés les aquifères généralisés à réserves d'eau essentiellement fossiles.


La profondeur moyenne du niveau des nappes (Figure 4.6) est faible, 10 à 15 m, pour les aquifères fissurés de l'ouest du Mali et les aquifères superficiels qui leur sont associés. Elle est par contre de 40 à 50 m en moyenne (pouvant même dépasser 100 m localement) pour les aquifères généralisés ainsi que pour l'aquifère de l'Infracambrien plissé du Gourma et du Gondo. L'aquifère Continental terminal/Quaternaire du delta intérieur du Niger constitue une zone particulière avec des niveaux de nappe inférieurs à 10 m liés à la recharge par les eaux de surface.

de 10 à 20 m

de 20 à 30 m

de 30 à 40 m

plus de 40 m

STOLLS - STATES

Figure 4.6

PROFONDEUR MOYENNE DU NIVEAU STATIQUE

Le réseau national de suivi des niveaux piézométriques comporte actuellement 210 piézomètres, les premières observations remontant à 1981. Elles mettent en évidence les évolutions suivantes [HDG/NTL/9]:

- tous les aquifères fissurés situés dans les secteurs de pluviométrie supérieure à 400 mm présentent des fluctuations de niveau saisonnières notables et d'amplitude très variable (moins de 1 m à plus de 15 m) tandis que les variations interannuelles ne sont que de quelques dizaines de cm. Elles témoignent de la faible capacité de régularisation de ces aquifères, de l'ordre de 3 à 5 ans. Ceci explique l'abaissement généralisé du niveau des nappes depuis 1969 consécutif à la sécheresse;
- la figure 4.7 montre un exemple des variations de niveau mesurées sur les sites de Tioribougou et de Karadié (région de Kolokani, pluviométrie de 450 à 700 mm) qui exploitent l'aquifère de l'Infracambrien tabulaire avec des pompes solaires débitant respectivement 30 et 100 m³/j et où la recharge saisonnière est très supérieure aux volumes actuellement prélevés;
- les aquifères généralisés, hormis les secteurs rechargés par les eaux de surface (delta intérieur du Niger notamment), n'ont pas présenté de variations piézométriques notables durant la période d'observation (Figure 4.7).

4.4.2.2. Débit des forages

Le débit moyen des forages productifs(*) est montré par aquifère et par tranche de débit dans le tableau 4.6a ci-avant. Les figures 4.8 et 4.9, pages 21 et 24, montrent, par secteur hydrogéologique, les débits moyens et, par Arrondissement, les pourcentages de forages à débit supérieur à 5 m³/h. Les pourcentages de forages par tranche de débit sur l'ensemble des forages productifs sont récapitulés dans le tableau 4.7 ci-dessous:

Tableau 4.7 - Pourcentages de forages par tranche de débit

Débit moyen (m³/h)	1 à 5	5 à 10	10 à 2 0	20 à 30	sup. à 30
% de forages productifs	62	22	11	2	3

Dans les aquifères fissurés, les venues d'eau principales sont recoupées généralement entre 35 et 55 m de profondeur.

La valeur de ces données statistiques est essentielle pour le calcul des coûts de l'eau selon le débit recherché (% de réussite et profondeur du forage).

^{*} Forage productif: forage ayant un débit égal ou supérieur à 1 m³/h (sauf en zones difficiles), donc exploitable par une pompe à motricité humaine.

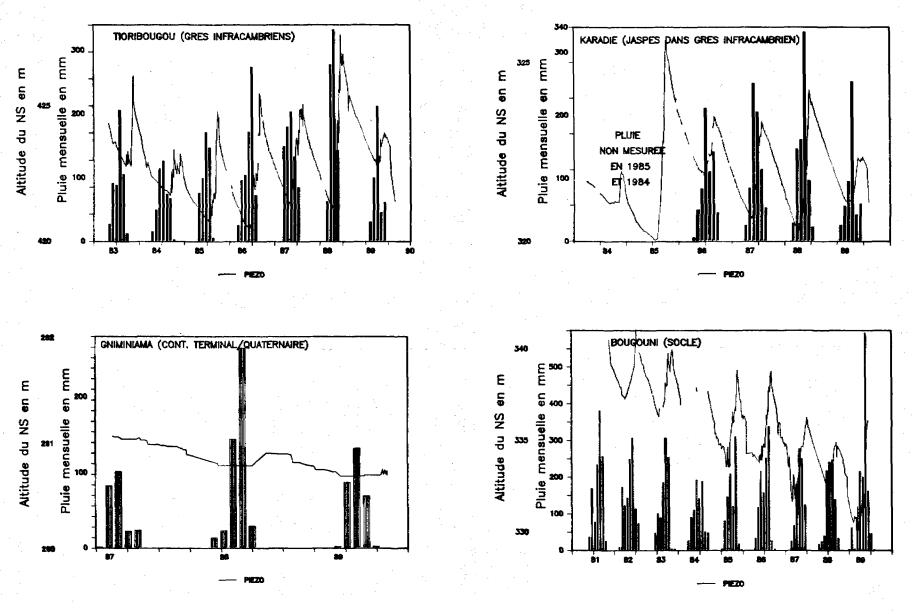


Figure 4.7 EXEMPLES D'EVOLUTION PIEZOMETRIQUE EN FONCTION DE LA PLUIE

4.4.2.3. Qualité des eaux

Dans les aquifères fissurés, les eaux souterraines sont de bonne qualité avec une faible minéralisation (Figure 4.10, page 25). Les conductivités sont en général inférieures à 500 micromhos/cm. Elles ont un faciès bicarbonaté calcique et des teneurs en ions majeurs très inférieures aux valeurs maxima admises pour les eaux de consommation. Elles ont par contre souvent un pH acide et sont agressives (voir Figure 5.6, Chapitre 5) avec des teneurs en fer et en nitrates parfois supérieures aux normes OMS, mais inférieures aux normes admises au Mali (Annexe 6).

Les aquifères situés au nord de Tombouctou et de Gao ont des eaux plus minéralisées, mais leur salinité est toutefois, en général, inférieure à 1 g/l.

Des eaux saumâtres ne sont rencontrées que dans l'aquifère du Continental intercalaire de l'Azaouad au nord d'Araouane, dans l'aquifère du Crétacé supérieur/Eocène inférieur à l'ouest de l'Adrar des Iforas et dans les formations primaires de la cuvette de Taoudenni.

A l'exception de quelques secteurs dans le Nord et l'Est où se rencontrent des eaux de faciès sulfaté ou magnésien, les eaux souterraines sont consommables par le bétail. Dans la quasi totalité du domaine cultivable, les eaux souterraines sont utilisables pour l'irrigation sans précaution particulière.

4.4.3. Ressources disponibles

4.4.3.1. Ressources renouvelables et réserves

Les ressources en eau souterraine (Figure 4.11, page 28 et tableau 4.8) sont composées, en proportions variables suivant les types d'aquifère et leur situation climatique, de ressources renouvelables et de réserves plus ou moins anciennes.

a) Les ressources renouvelables proviennent de l'infiltration de la pluie et des eaux de surface ou recharge. Elles sont définies par une valeur moyenne calculée sur une période suffisamment longue pour amortir l'effet des variations du régime pluviométrique. La recharge annuelle est fonction des pluies d'hivernage et de la capacité de régularisation des aquifères. Ainsi la séquence d'années sèches depuis 1969/70 a entrainé une réduction temporaire du renouvellement des ressources qui s'est traduite par un abaissement général du niveau des nappes, en particulier des nappes superficielles qui sont exploitées par les points d'eau traditionnels.

Les ressources renouvelables présentées dans le tableau 4.8 ont été estimées sur la base des fluctuations de niveau mesurées sur le réseau piézométrique à partir desquelles des relations entre la pluie, l'infiltration et la profondeur des nappes ont pu etre établies [HDG/NTL/9].

Pour l'ensemble du Mali, le volume total des ressources en eau renouvelables des aquifères est de l'ordre de 66 milliards de m³/an en année de pluviométrie moyenne.

de 1 à 3 m3/h

de 5 à 10 m3/h

de 10 à 15 m3/h

de 15 à 20 m3/h

de 20 à 30 m3/h

données insuffisantes

SUBDIVISION PAR SECTEUR HYDROGEOLOGIQUE Décembre 1989 DNHE/PNUD/DTCD-Projet MLI/84/005

SIGMA : SDSHYQM

Figure 4.8

DEBIT MOYEN DES FORAGES PRODUCTIFS

21.0

Tableau 4.8 - Ressources disponibles en eau souterraine, estimées pour les principaux aquifères

Aquifère	Superfi- cie	Ressources renouvelables		Réserves	
nqu2200	(km ²)		(109 m ³ /an)	(mm)	(10^9m^3)
TYPE FISSURE: - Socle: . Kayes/Bougouni . Adrar	79.010 77.070	220 < 0,1	17,4 0	1.210 30	96 2
- Infracambrien tabulaire	174.810	180	31,9	650	113
- Infracambrien plissé	97.420	< 0,1	0	160	15
- Cambrien	66.060	110	7,4	510	34
- Primaire Taoudenni	112.700	0	0	(Eau S	Saumâtre)
TYPE INTERGRANULAIRE: - Continental intercalaire	82.320	0	0	5.500	450
- Continental intercalaire/ Continental terminal	208.870	< 0,1	0	4.020	840
- Crétacé supérieur/ Eocène inférieur	138.910	< 0,1	0	1.800	250
- Continental terminal/ Quaternaire	202.830	45,8	9,3	4.530	920
TOTAUX			66	-	2.720

La recharge moyenne estimée pour les unités des aquifères fissurés de l'ouest et du sud du Mali varie, approximativement, entre 60.000 et 240.000 m³/an/km² (Figure 4.12, page 29). La valeur la plus faible correspond à l'aquifère cambrien situé en zone sahélienne et la valeur la plus élevée à l'aquifère du Socle de la région de Bougouni qui bénéficie de précipitations supérieures à 1200 mm. Des estimations effectuées à partir d'hypothèses basses (en considérant une pluviométrie d'année sèche et des aquifères de nature semi-continue) aboutissent a des ressources renouvelables comprises entre 36.000 et 140.000 m³/an/km².

Les ressources en eau des aquifères fissurés de l'est du Mali (Infracambrien plissé et socle de l'Adrar des Iforas) sont très réduites. Les ressources renouvelables ne sont en général disponibles et exploitables que dans les nappes alluviales de fonds d'oued où la recharge par l'infiltration des eaux de crue peut représenter, localement, de 3.000 à 11.000 m³/an/km².

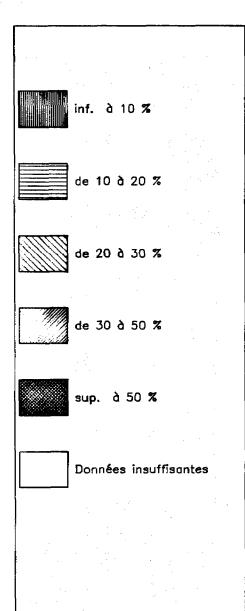
Parmi les aquifères généralisés, seul le Continental terminal/Quaternaire de la vallée du Niger dispose de ressources renouvelables importantes provenant de l'infiltration des eaux de surface (1,6 milliards de m³/an) et de la pluie (7,6 milliards de m³/an). La recharge moyenne pour cet aquifère, d'environ 45.000 m³/an/km², masque en fait des valeurs très variables suivant les secteurs. Elle est concentrée dans le delta

intérieur où la nappe est peu profonde et les eaux de surface sont abondantes avec une recharge atteignant 100.000 m³/an/km². Dans les zones éloignées des aires d'inondation, la réalimentation saisonnière des nappes ne représente que quelques milliers de m³/an/km² et devient très faible lorsque le niveau des nappes se situe au-delà de 40 m de profondeur. C'est aussi le cas des autres aquifères généralisés de la zone sahélienne, des petites nappes perchées pouvant être cependant localement réalimentées.

b) Les réserves sont des ressources en eau permanentes qui peuvent correspondre à des eaux fossiles rechargées au cours des derniers millénaires (cas des aquifères généralisés) ou à des eaux plus récentes pouvant être périodiquement remplacées par des eaux d'infiltration actuelles et qui sont situées sous la zone de battement de la surface des nappes jusqu'au mur de l'aquifère (cas le plus fréquent dans les aquifères fissurés).

Pour les aquifères de type fissuré, les réserves présentées dans le tableau 4.8 ont été estimées en considérant trois zones d'emmagasinement superposées :

- la zone de recouvrement et d'altération du substratum avec une porosité utile moyenne de 5 % et une épaisseur pouvant atteindre 40 m,
- la zone fissurée active, définie à partir des profondeurs moyennes des venues d'eau principales, d'épaisseur variant de 20 à 50 m avec une porosité utile moyenne estimée à 1 %,
- la zone profonde mais limitée à la profondeur de 150 m (limite des forages d'hydraulique villageoise) avec une porosité utile moyenne de 0,1 %.

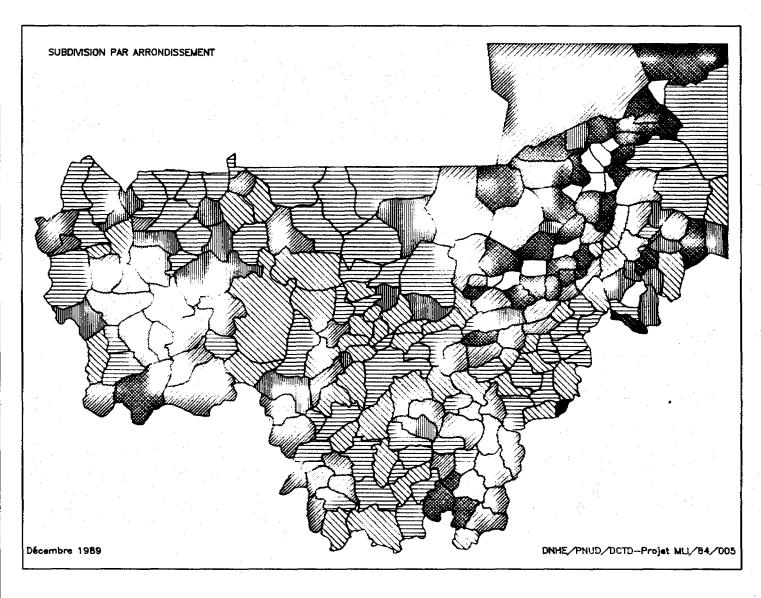
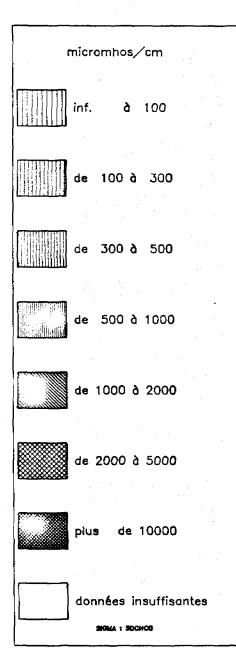

Pour les aquifères généralisés de type intergranulaire, les données sont peu nombreuses et irrégulièrement réparties; aussi, les réserves ont été estimées en considérant une limite arbitraire d'exploitation à 100 m de profondeur et des valeurs moyennes de porosité utile en fonction des épaisseurs relatives de formations sableuses et argileuses dans les coupes de forages [HDG/NTL/20].

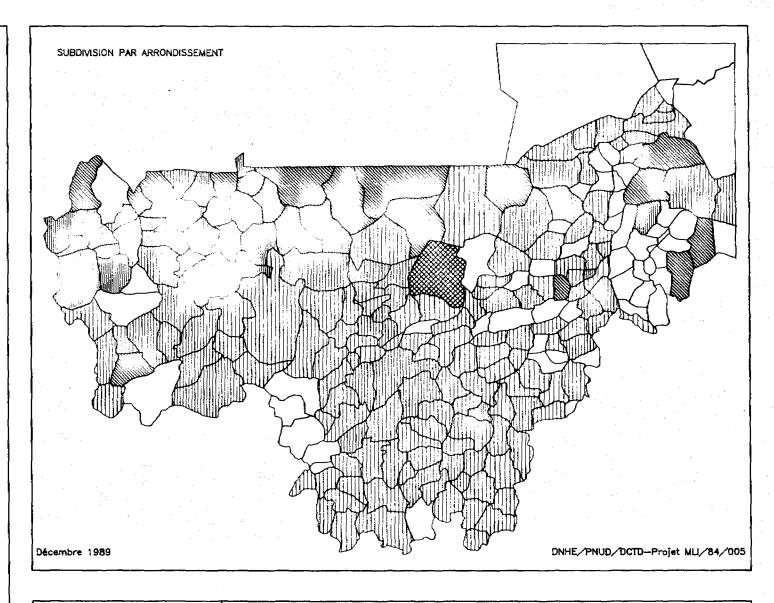
L'ensemble des réserves en eau du Mali représenterait, dans les conditions précitées, un volume de 2.720 milliards de m³ d'eau.

4.4.3.2. Ressources mobilisables et conditions d'exploitation

Les ressources moyennes estimées par km² ci-dessus ne sont qu'indicatives des potentiels économiquement exploitables.

a) Dans les aquifères fissurés à réalimentation saisonnière, les réserves ne doivent être exploitées que temporairement comme appoint pour compenser les déficits de la recharge durant les séquences d'années sèches. Les ressources renouvelables ne sont pas non plus intégralement récupérables par pompage car une partie est drainée naturellement par le réseau hydrographique ou est reprise par évapotranspiration. Avec des hypothèses conservatrices on peut considérer, en pratique, qu'environ 50 % de la recharge moyenne calculée est exploitable. Les aquifères fissurés sont par ailleurs caractérisés par une forte hétérogénéité et par des discontinuités qui compartimentent les zones perméables. Les zones influencées par les pompages sont d'extension variable et modulent la disponibilité des ressources. Ainsi, suivant les aquifères et les secteurs, la surface des compartiments peut varier d'une fraction de km² à une dizaine de km²; aussi l'exploitation des aquifères fissurés ne peut-elle se faire que d'une manière disséminée avec des débits limités aux ressources mobilisables autour du site considéré.


Figure 4.9

POURCENTAGE DE FORAGES A DEBIT) 5 m3/h

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Figure 4,10

CONDUCTIVITE MOYENNE DES EAUX SOUTERRAINES

Ch.

Des fourchettes de débits exploitables (Tableau 4.9) ont pu être établies par aquifère sur la base de 4 critères

- le taux de réussite des forages,
- la densité des intrusions doléritiques,
- l'extension des nappes superficielles,
- la réaction des nappes à l'exploitation actuelle.

Tableau 4.9 - Débits ponctuels exploitables estimés dans les aquifères fissurés à ressources renouvelables

Aquifère	Zone influencée par pompage (km²)	Recharge unitaire (10 ³ m³/an/km²)	Ressources exploitables (103 m3/an)	Débit d'exploitation (m ³ /j)	
Cambrien	0,3 - 3	15 - 50	4,5 - 150	12 - 410	
Infracambrien tabulaire	0,3 - 10	30 - 70	9,5 - 700	25 - 1900	
Socle	0,3 - 3	40 - 90	12,0 - 270	33 - 740	

On notera que:

- l'aquifère de l'Infracambrien tabulaire est le plus favorable à la mise en valeur des eaux souterraines en raison de sa densité de fissuration. C'est d'ailleurs lui qui supporte les plus fortes exploitations locales actuelles (jusqu'à 700 m³/j), sans aucun signe de surexploitation;
- les aquifères fissurés de l'est du Mali, pratiquement dépourvus de ressources renouvelables et avec des réserves réduites, ne peuvent être exploités qu'à de faibles débits, une dizaine de m³/j au maximum, avec en outre des risques de dénoyage des aquifères.
- b) Dans les aquifères généralisés, l'exploitation peut se faire d'une manière concentrée avec des débits pouvant aller de plusieurs dizaines à quelques centaines de m³/h dans les zones les plus perméables et rechargées par les eaux de surface. L'aire influencée par les pompages est généralement très étendue, ce qui limite d'une part les rabattements au niveau des ouvrages de captage, d'autre part la baisse des réserves locales de l'aquifère. Dans ce type d'aquifère, aux réserves importantes, les ressources mobilisables incluent non seulement la recharge (faible), mais également une part des réserves. Elles peuvent donc être beaucoup plus exploitées que les ressources des aquifères fissurés.

Le tableau 4.10 montre, selon le type d'aquifère, les débits maxima continus exploitables sur les réserves pendant 10 ans et avec un rabattement maximum de 30 mètres à 1 mètre du forage pompé et dans l'hypothèse de valeurs de transmissivités T et de coefficients d'emmagasinement S hautes et basses.

Tableau 4.10 - Débits maxima ponctuels exploitables sur les réserves

M	НҮР	POTHESE BA	SSE	HYPOTHESE HAUTE						
Type aquifère	T (m ² /s)	S	Q (m ³ /h)	T (m ² /s)	S	Q (m ³ /h)				
Fissuré	5.10-5	1.10-4	3,5	5.10-4	1.10-3	35				
Généralisé	5.10-4	3.10-2	42.0	5.10-3	8.10-2	385				

4.4.4. Exploitation actuelle

4.4.4.1. Types de point d'eau et moyens d'exhaure

Les eaux souterraines sont depuis toujours exploitées au moyen de puits et puisards traditionnels par les populations sédentaires et nomades pour la satisfaction de leurs besoins en eau. Toutefois, la sécheresse qui sévit au Mali depuis le début des années 70, a entraîné le tarissement de plus en plus précoce de ces points d'eau traditionnels dans de vastes zones du Mali. Ceci a créé une situation de pénurie qui a provoqué un développement spectaculaire des points d'eau modernes profonds (puits et forages) dont l'exploitation est à l'abri des aléas climatiques.

a) Points d'eau traditionnels

Les puits villageois ou de concessions et les puisards creusés dans les bas-fonds sont des ouvrages de construction rudimentaire, peu profonds (5-15 m), généralement dans des altérites et des alluvions non consolidées. Ils s'éboulent facilement ou se tarissent et nécessitent des curages et des approfondissements fréquents en raison de l'absence de soutènement des parois. Le puisage, généralement à la main, donne un débit variant, selon les ouvrages et les saisons, de quelques centaines de l/j à quelques m³/j. Ces points d'eau dont le nombre n'est pas connu mais doit dépasser les 75000 ouvrages si l'on inclut les puits de concession dans les centres ruraux et urbains et les zones de puisards, n'ont pas fait l'objet d'un inventaire systématique.

Les puits pastoraux, estimés à plusieurs centaines et localisés essentiellement dans les régions sahéliennes et désertiques du Nord et de l'Est, sont des ouvrages profonds de 40 à 50 m en moyenne mais pouvant atteindre 100 m, foncés le plus souvent dans des dépôts continentaux argilo-sableux. Le puisage se fait par des dalous de 40 à 50 litres tirés par des animaux; les débits peuvent atteindre 15 à 20 m³/j sur certains ouvrages avec 3 à 5 puisages simultanés en période d'affluence. Ces puits traditionnels non cuvelés s'éboulent et peuvent se tarir rapidement lorsqu'ils sont exploités car, le plus souvent, ils ne sont creusés qu'à quelques dizaines de cm seulement sous le niveau d'eau.

SYNTHESE HYDROGEOLOGIQUE DU MALI

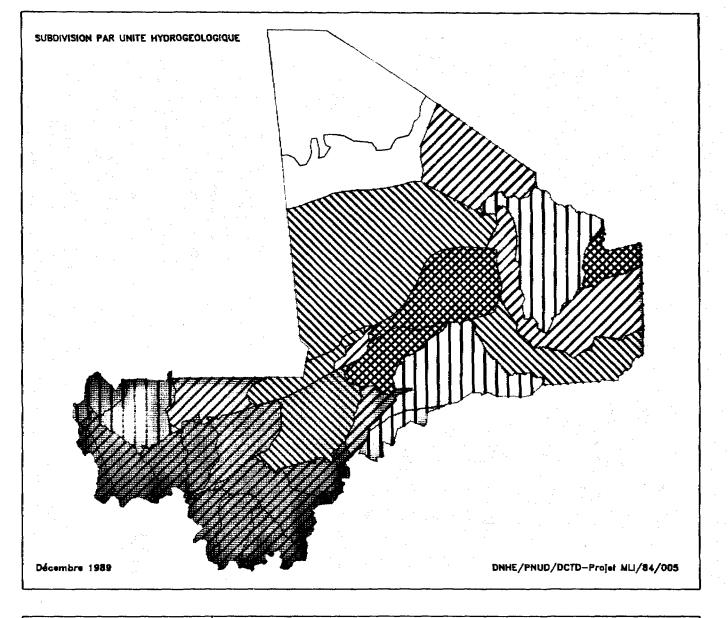
Ressources renouvelables (1000 m3/km2/an)

inf. à 50

de 50 à 100

de 100 à 150

sup à 150

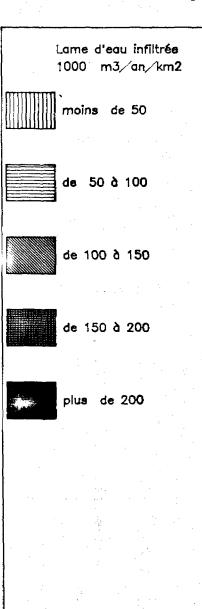

Réserves (1000 m3/km2)

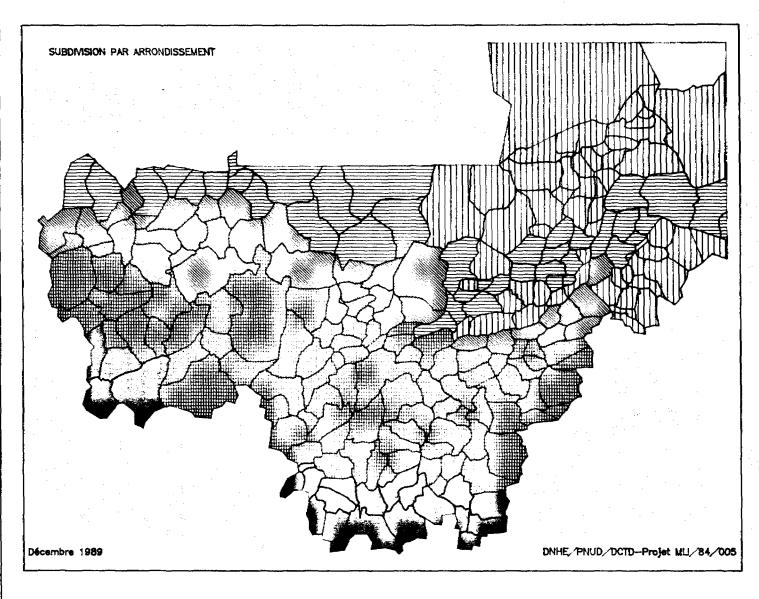
inf. à 500

de 500 à 2000

de 2000 à 500**0**

sup. à 5000


G.,


Fig. 4.11

RESSOURCES EN EAU SOUTERRAINE

SCHEMA-DIRECTEUR DES RESSOURCES EN EAU DU MALI

Figure 4.12

RECHARGE DES NAPPES PAR LES PRECIPITATIONS

Ch. 4

b) Points d'eau modernes

D'après la Banque SIGMA actualisée au 31 décembre 1988, 12.751 forages et 1.484 puits modernes ont été réalisés au Mali, dont plus de la moitié à partir de 1985. On considère que ces chiffres représentent pratiquement la totalité des ouvrages modernes existants au Mali. Toutes les données sur ces ouvrages ont été stockées dans les fichiers de SIGMA. Sur le total des forages, 8.480 sont productifs (débit supérieur ou égal à 1 m3/h) et environ 6.313 sont équipés de pompes [INF/RPT/2]. L'exploitation se fait principalement par des pompes manuelles avec 6.092 pompes installées dont 3.117 pompes India, 1.717 pompes Vergnet, 658 pompes Kardia et 600 pompes de diverses marques mises a l'essai [INF/RPT/4].

Les débits prélevés par pompes manuelles sont de l'ordre de 6 m³/j, mais peuvent varier entre 3 et 15 m³/j suivant le régime d'utilisation de la pompe, les caractéristiques du forage (profondeur de l'eau et débit), les besoins et les saisons.

En 1988, 111 forages étaient équipés de pompes solaires débitant entre 20 et 110 m³/j et à peu près autant de forages sont équipés de groupes motopompes submersibles principalement pour les adductions d'eau (San et Koutiala par exemple), pour les usages industriels (Koutiala, Bamako) et pastoraux (ODEM) et pour quelques petits périmètres d'irrigation privés. Localement, les débits prélevés peuvent atteindre 700 m³/j sur un site équipé de plusieurs forages en exploitation.

Les puits modernes directs sont exécutés avec des équipements permettant le fonçage à grandes profondeurs dans les formations dures et noyées. La hauteur d'eau dans ces ouvrages est donc en général suffisante pour assurer un certain débit même en période de sécheresse (réserve tampon importante). Les ouvrages sont cuvelés sur toute leur hauteur et équipés normalement avec des buses filtrantes dans la zone aquifère captée.

Les puits-citernes sont connectés à des forages qui assurent leur alimentation en eau dans les secteurs où les venues d'eau sont plus profondes que les niveaux statiques. Les débits journaliers sont de l'ordre de 3 à 10 m³/j, voisins de ceux exhaurés par les pompes manuelles sauf en zones pastorales où ils sont souvent exploités à 20 m³/j en moyenne et, en pointe, à plus de 30 m³/j, lorsque leur débit le permet.

4.4.4.2. Estimation des volumes prélevés

A défaut d'un inventaire systématique de tous les points d'eau traditionnels, de mesures des débits et des durées de pompages qui d'ailleurs varient fortement selon les saisons, l'exploitation actuelle des eaux souterraines a été calculée à partir de normes de consommation unitaire et basée sur une estimation de la population, du bétail et des superficies irriguées (voir Chapitres 5, 6 et 7).

Sur une exploitation totale des eaux souterraines d'environ 106 millions de m³/an (soit moins de 0,2 % des ressources renouvelables), les prélèvements sur les forages et les puits modernes représentent environ 21 millions de m³/an, soit 20 % de l'exploitation totale. Ainsi, le puisage dans les points d'eau traditionnels, principalement sur les nappes superficielles, constituent donc encore au jour d'hui, en dépit des efforts d'équipement en points d'eau modernes, le principal mode d'exploitation des eaux souterraines (80 %).

Les tableaux 4.11 et 4.12 montrent la répartition des débits exploités, selon les usages, par Région et par aquifère. On peut y observer que:

- les eaux souterraines sont principalement exploitées dans les cinq premières Régions, les plus peuplées, couvrant l'ouest et le centre du Mali. Les nappes y sont, en général, peu profondes, accessibles à des points d'eau traditionnels, bien réalimentées durant l'hivernage et peu minéralisées (plus de 80 % des débits exploités);
- les aquifères fissurés et les nappes superficielles dans les altérites qui leur sont associées, couvrent 70 % des prélèvements (75 millions de m³/an). Parmi ces aquifères, l'Infracambrien des plateaux gréseux qui occupe la majeure partie de la zone climatique soudano-sahélienne, est le principal réservoir souterrain misàcontribution (plus de 40 millions de m³/an). C'est aussi l'aquifère où les débits ponctuels les plus importants sont exploités, soit par des pompes solaires pour le maraîchage (110 m³/j à Nossombougou) ou par des pompes submersibles pour des usages industriels (700 m³/j à Koutiala);
- le seul aquifère généralisé où l'exploitation est significative est le Continental terminal de la vallée du Niger (près de 30 millions de m³/an). Les prélèvements sont toutefois concentrés dans les secteurs rechargés par les eaux de surface où les nappes sont peu profondes et les débits élevés même dans les puits traditionnels: secteur du delta vif et frange des plaines d'inondation bordant le Niger entre Goundam et Gao;
- les autres aquifères généralisés où les niveaux d'eau sont profonds et les eaux souvent de qualité médiocre, ne sont exploités que localement par des puits pastoraux et quelques forages.

Tableau 4.11 - Exploitation des eaux souterraines estimée pour 1989 par Région selon l'usage (en milliers de m³/an)

Région	Usage	Population	Bétail	Irrigation	Total	x
Kayes		6.983	5.306	3.689	15.378	14,5
Kouliko	ro	7.921	6.080	3.586	17.587	16,6
Sikasso)	9.258	7.821	4.277	21.356	20,1
Ségou		8.298	4.494	3.370	16.162	15,2
Mopti		6.500	6.583	3.260	16.343	15,4
Tomboud	tou	2.496	4.996	1.879	9.371	8,8
Gao		2.188	3.178	1.361	6.727	6,3
Bamako		2.326	232	778	3.336	3,1
TOTAL		45.970	38.690	21.600	106.260	100

Tableau 4.12 - Exploitation des eaux souterraines estimée pour 1989 par aquifère(1) selon l'usage (en milliers de m³/an)

Usage Aquifère	Population	Bétail	Irrigation	Total	X
Continental termi- nal/Quaternaire	11.795	11.076	5.897	28.768	27,1
Crétacé sup./ Eocène inf.	404	638	259	1.301	1,2
Continental intercalaire	315	758	259	1.332	1,3
Cambrien ⁽¹⁾	3.967	3.961	1.987	9.915	9,3
Infracambrien tabulaire(1)	20.401	12.391	8.554	41.346	38,9
Infracambrien plissé ⁽¹⁾	1.963	3.107	1.231	6.301	5,9
Socle(1)	7.125	6.759	3.413	17.297	16,3
TOTAL	45.970	38.690	21.600	106.260	100

(1) y compris l'aquifère superficiel associé.

4.5. CONTRAINTES ET LIMITATIONS

4.5.1. Contraintes liées aux ressources

4.5.1.1. Eaux de surface

L'exploitation et la mise en valeur des eaux de surface sont affectées par des contraintes climatiques, physiques et géomorphologiques :

- les données hydrologiques sur les rivières permanentes sont parfois insuffisantes au niveau des sites d'aménagement: historiques trop court ou mesures douteuses durant les crues et les étiages. Elles sont quasiment inexistantes sur les eaux de surface non pérennes. Les valeurs caractéristiques de l'écoulement pour définir les projets techniques doivent donc être extrapolées ou estimées par des méthodes approchées, avec le risque de ne pas être réellement représentatives du bassin versant à aménager;
- l'irrégularité du régime pluviométrique et hydrologique est telle qu'un barrage peut ne pas se remplir ou au contraire être emporté par une crue exceptionnelle, s'il n'est pas pourvu d'ouvrage d'évacuation adéquat;

- l'évaporation sur les retenues d'eau et les mares prélève une part importante de l'eau stockée, jusqu'à 2000 mm pendant les 6 à 8 mois de saison sèche;
- les caractéristiques physiographiques et morphologiques des bassins versants conditionnent en grande partie le ruissellement et l'érosion;
- les meilleurs sites d'ouvrages ne sont pas nécessairement près des zones de développement;
- les contraintes géologiques (qualité géotechnique du site et perméabilité des terrains noyés par la retenue) peuvent conduire à l'abandon de sites présentant par ailleurs des caractéristiques topographiques et hydrologiques favorables.

4.5.1.2. Eaux souterraines

Les facteurs limitant l'exploitation des eaux souterraines sont d'ordre quantitatif et qualitatif. Pour les aquifères fissurés, du fait de leur nature semi-continue ou discontinue, les volumes exploitables sont liés aux conditions hydrogéologiques locales: perméabilité et compartimentage des aquifères, importance de la recharge et des réserves. La salinité des eaux de ces aquifères ne constitue pas véritablement une contrainte majeure en raison d'une minéralisation généralement peu élevée, mais par contre leur agressivité, assez fréquente, nécessite l'emploi de tubages et d'équipements de pompage inoxydables relativement coûteux.

Les ressources en eau des aquifères généralisés sont suffisantes pour supporter des exploitations très importantes même à long terme pour des projets de développement. Toutefois la salinité élevée des eaux dans le secteur nord de l'Azaouad et sur la bordure occidentale de l'Adrar des Iforas limite considérablement les possibilités d'exploitation dans ces secteurs.

Une carte d'exploitabilité des eaux souterraines par Arrondissement pour l'ouest et le centre du Mali (Figure 4.13) a été établie à titre indicatif en combinant plusieurs variables (ou critères) extraites des données statistiques de forage: taux de réussite (TR), profondeur du niveau statique (NS), débit moyen (Q), agressivité (AGRE) et conductivité (COND). Pour chaque variable, trois classes d'intervalle ont été arbitrairement choisies et à chaque classe un coefficient a été affecté en fonction de son importance relative par rapport aux possibilités d'exploitation. L'indice évaluant l'exploitabilité découle de la formule :

$$EXP = (TR + Q + NS + AGRE)* COND$$

Le résultat est exprimé en pourcentage par rapport aux conditions optimales d'exploitation.

Les aménagements d'eaux de surface (retenues d'eau et canaux d'irrigation) constituent un facteur favorable en augmentant de manière significative les ressources renouvelables par infiltration, mais peuvent avoir également des effets négatifs lorsque la remontée du niveau des nappes est telle qu'elle provoque une augmentation de l'évapotranspiration pouvant s'accompagner d'un accroissement de la salinité dans la frange superficielle.

moins de 40 %

de 40 à 60 %

de 60 à 70 %

de 70 à 80 %

de 80 à 90 %

plus de 90 %

Données insuffisantes

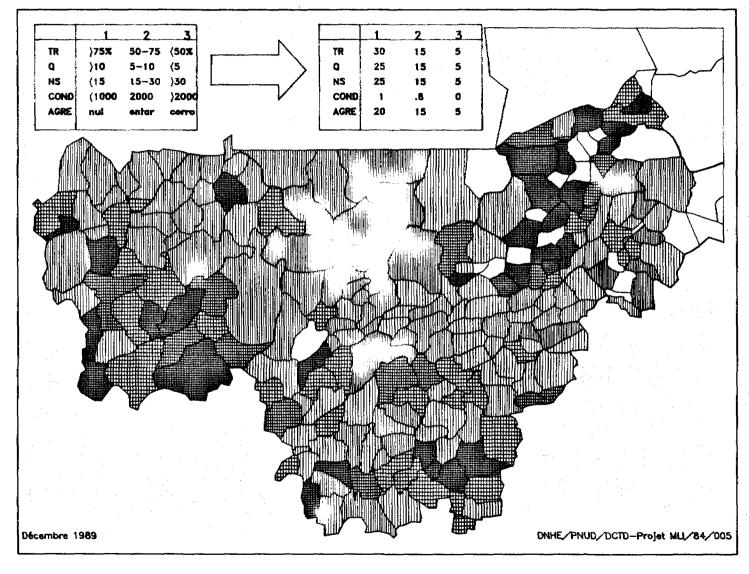


Figure 4.13

EXPLOITABILITE DES EAUX SOUTERRAINES

4.5.2. Contraintes liées aux modes d'exploitation

Les sites de retenue d'eaux de surface sont souvent des plaines alluviales aux sols fertiles, réduisant d'autant les zones cultivables des terroirs villageois. Les pertes par infiltration et par évaporation limitent souvent la durée d'utilisation des eaux emmagasinées aux premiers mois de la saison sèche, alors que c'est en fin de saison sèche que les besoins en eau sont les plus élevés, en particulier pour l'hydraulique pastorale. Les plans d'eau de surface sont aussi un risque potentiel pour le développement des maladies hydriques.

L'exploitation des eaux souterraines est soumise à deux types de contraintes liées, d'une part à la localisation des zones perméables par rapport aux sites d'utilisation, et d'autre part à l'entretien et aux coûts de fonctionnement des systèmes d'exhaure équipant les forages. Dans certains secteurs d'aquifères fissurés, les zones les plus favorables pour l'exploitation, surtout si l'on recherche des débits supérieurs à 5 ou 10 m³/h pour des projets de développement ou d'adduction d'eau, peuvent être éloignées des sites d'utilisation. Cette contrainte n'existe pas pour les aquifères généralisés, les débits recherchés, même très élevés, pouvant le plus souvent être trouvés sur le site même de leur utilisation.

L'exploitation par forage ne peut se faire que par l'installation de pompes manuelles ou de motopompes, ce qui implique la mise en place d'un système de maintenance et d'approvisionnement en pièces détachées et, éventuellement, en carburant, dans des zones souvent difficiles d'accès.

Les coûts d'exhaure peuvent ainsi devenir une contrainte majeure pour la justification de projets de développement utilisant les eaux souterraines, notamment en irrigation (voir chapitre 7 et Annexe 4). Comme ils sont fonction principalement des débits de pompage et de la profondeur des niveaux rabattus, les zones les plus favorables pour l'exploitation des eaux souterraines sont les suivantes :

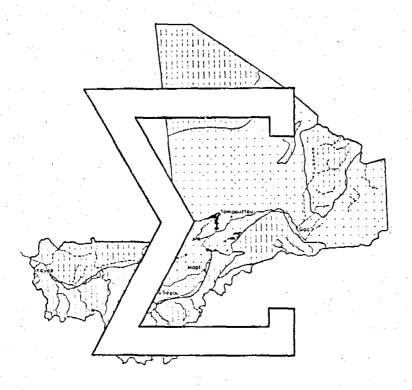
- la région de Mopti où l'aquifère généralisé du Continental Terminal a des niveaux statiques peu profonds et des débits spécifiques très élevés,
- les plateaux gréseux de la zone climatique soudano-sahélienne où des débits spécifiques relativement élevés peuvent être exploités dans l'aquifère fissuré de l'Infracambrien qui dispose aussi de ressources renouvelables importantes,
- un certain nombre d'Arrondissements répartis dans les 3 premières Régions du Mali avec des niveaux d'eau entre 10 et 20 m de profondeur et des débits spécifiques supérieurs à 0,5 m³/h/m.

Dans les Régions de Tombouctou et de Gao, les coûts d'exhaure sont relativement élevés en raison de la profondeur des nappes, généralement supérieure à 50 m. Par contre, tous les forages sont productifs avec des débits pouvant atteindre plusieurs dizaines de m³/h et de faibles rabattements.

4.5.3. Contraintes liées aux conditions économiques

Les aménagements à partir des eaux de surface pérennes impliquent en général des financements très importants, d'abord pour les phases d'étude et de reconnaissance puis pour l'exécution des travaux, et demandent de longs délais d'exécution.

Le coût d'un ouvrage de rétenue d'eau de surface non pérenne est en moyenne de 30 millions de F.CFA, mais les microréalisations peuvent ne coûter que 1 à 2 millions de F.CFA tandis que les plus grandes peuvent dépasser 200 millions de F.CFA [SDM/ENP/4] et nécessiter une aide extérieure. Dans ce cas, les financements demandent du temps pour être mobilisés. Il faut un minimum de 3 ans pour la réalisation d'un ouvrage entre l'expression de la demande et la mise en eau de l'ouvrage.


L'exploitation des eaux souterraines par des puits directs requiert non seulement un investissement relativement élevé, entre 3 et 15 millions de F.CFA suivant la profondeur des ouvrages et les zones géographiques, et des durées d'exécution de 1 à 3 mois. Si la solution des puits-citernes est adoptée, il faut ajouter le coût du forage à celui du puits. Il y a aussi le risque d'avoir un ouvrage sec après plusieurs mois de travail dans les secteurs aux conditions hydrogéologiques peu favorables si aucune reconnaissance préalable par forage et aucun pompage d'essai n'ont été exécutés. Les frais d'entretien pour les curages périodiques sont par contre peu importants et ces ouvrages restent toujours accessibles aux utilisateurs avec des moyens de puisage traditionnels.

L'exploitation par forage présente deux principaux avantages par rapport aux autres types de point d'eau: leur rapidité d'exécution et la possibilité d'obtenir des débits élevés et permanents pour des activités de développement. Les coûts d'investissement dépendent de la profondeur de l'ouvrage et du taux de réussite qui, dans certaines zones, peuvent plus que doubler le coût moyen du forage productif, lequel est actuellement de 5 millions de F.CFA. La recherche d'un débit élevé (supérieur à 10 m³/h par exemple) peut également, dans les zones difficiles, quadrupler ce coût moyen.

CHAPITRE 4

Références bibliographiques hors projet

- [4.1] Pluviométrie du Mali 1936-1985 Office Statistique des Communautés Européennes - 1988
- [4.2] Les ressources terrestres au Mali TAMS 1983
- [4.3] Influence des barrages de Sélingué et Markala sur les débits à l'aval-DNHE-1988
- [4.4] Options et investissements prioritaires dans le domaine de l'irrigation SCET-AGRI/GERSAR-PNUD/BM/FAC 1985
- [4.5] RODIER J., RIBSTEIN P. Estimation des caractéristiques de la crue décennale pour les petits bassins versants du Sahel couvrant de 1 à 10 km² ORSTOM-MONTPELLIER 1988
- [4.6] PUECH C., CHABI GONI D. Méthode de calcul des débits de crue décennale pour les petits et moyens bassins versants en Afrique de l'Ouest et Centrale-CIEH OUAGADOUGOU 1984

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 5

ALIMENTATION EN EAU POTABLE ET ASSAINISSEMENT

TABLE DES MATIERES

TEXT	'E															
5.1.	INTRODUC															
5.2.	SITUATIO															
		Aliment														
	5.2.2.	Aliment	tation	en ea	u du	mili	eu	rure	al							6
	5.2.3.	Assaini	ssemen	t												14
•	5.2.4.	Conclus	ions													15
5.3.	BESOINS.															1.5
	5.3.1.	Quantif	ication	n et	répar	titi	on	des	bes	oins	opt	ima	en e	au.		17
	5.3.2.	Normes	quanti	tativ	es			,								19
	5.3.3.	Normes	qualit	ative	s	• • • •				• • • •	• • • •	• • • •	• • • •		• • • • •	20
5.4.	ADEQUATION	ON RESS	OURCES	/BESO	INS											21
		Eaux st														
		Eaux so	_													
		DOCIN NO.	G DOLLG								• • • •					
5.5.	CONTRAIN	TES ET	RECOMMA	ANDAT	IONS.											22
		Ressour														
		Moyens														
		Morphol														
		Context														
		Coût de														
		Assaini														
5.6	CONCLUSIO	ONG ET	PECOMM	A NTTA A TO	TONG	CENE.	DAT.	ក្ន								36
0.0.		Conclus														
		Recomma														
BIBL	I OGRAPHI E	• • •, • • • •	• • • • • •	• • • • •	• • • • •			• • • •				•••	• • • •	• • • •		38
														,		
TABL	EAUX						٠.,	•						1		
5.1.	Répartit: par caté					_	-									2
5.2.	Caractér	istique	s des s	systèr	mes d	'add	uct	ion	d'e	au p	otab	le		"		
	des loca	lités g	érées p	par El	DM et	DNH	E (1989)	• • • •	• • • •	• • • •	• • • •	• • • •	. .	4
5.3.	Situation du milie										par	Rég	ion.	• • • •	. 8 е	t 9
5.4.	Récapitul humains d															11
5.5.	Besoins of									elon	les	usa	ges	:		17

5.6.	et en 2001 selon les normes du SD et les types d'agglomérations	20
5.7.	Potentiel actuel de réalisation de systèmes d'adduction d'eau sommaires dans les Centres semi-urbains et ruraux par Région à partir des eaux souterraines	24
5.8.	Coûts moyens de l'eau selon différents systèmes d'alimentation en eau et en fonction de la taille des localités	32
5.9.	Ordres de grandeur des investissements 1992-2001 en hydraulique villageoise	33
5.10	Ordre de grandeur des investissements 1992-2001 pour les adductions sommaires	34
FIGU.	RES	
5.1.	Graphiques de répartition des forages productifs et d'utilisation des pompes selon plusieurs critères	7
5.2.	Taux de couverture des besoins en eau par les pompes et les puits	12
5.3.	Nombre moyen d'habitants par pompe	13
5.4.	Besoins en eau villageois à l'horizon 2001	16
5.5.	Besoins en eau des populations et du bétail	18
5.6.	Agressivité des eaux (selon l'indice de Ryznar)	26
5.7.	Densité des villages	29

5

ALIMENTATION EN EAU POTABLE ET ASSAINISSEMENT

5.1. INTRODUCTION

Soucieux d'améliorer, en termes de quantité et de qualité, l'approvisionnement en eau des populations du Mali qui traditionnellement se fait à partir des puits, mais aussi de rivières et de mares, l'Etat malien a lancé, depuis plus de 20 ans, des programmes d'Hydraulique Urbaine et, depuis une quinzaine d'années des programmes d'Hydraulique Villageoise. Parallèlement, il a lancé des programmes d'Assainissement qui sont restés essentiellement urbains.

On traitera tout d'abord de la situation actuelle de l'alimentation en eau potable et de l'assainissement dans les différentes localités du Mali selon le classement adopté pour le Schéma Directeur, à savoir Centres urbains et semi-urbains (qui constituent l'ensemble du milieu urbain), Centres ruraux et Villages (qui constituent l'ensemble du milieu rural).

Le tableau 5.1 ci-après donne la répartition du nombre et de la population⁽¹⁾ de ces différentes catégories de localités en 1989 et 2001 (début et fin du Schéma Directeur), classées par tranches de population. Le tableau indique également le nombre de localités qui disposent d'un système moderne d'approvisionnement en eau (adduction d'eau, forage avec pompe manuelle, solaire ou à moteur, puits moderne).

On remarquera que:

- le milieu rural représente, en 1989, 99,4 % des localités du Mali, mais seulement 78,3 % de la population, proportions qui baisseront légèrement d'ici 2001 (98,9 % et 71,6 %); notamment le nombre de localités du milieu urbain (sup. à 5000 hab) va doubler d'ici 2001;
- plus de la moitié des localités du Mali ont moins de 400 habitants mais ne totalisent que 22 % de la population, ce qui a une forte implication sur le taux de couverture des besoins en eau (voir plus loin);
- l'augmentation de la population rurale en 2001 par rapport à 1989 sera de 17 %, contre 67 % pour la population urbaine.

Le Chapitre 5 traitera ensuite des besoins à satisfaire pour parvenir à une couverture totale des besoins en eau de la population en 2001 selon des normes qui seront définies, de l'adéquation entre ces besoins et les ressources en eau disponibles et des contraintes qui leur sont liées. On concluera avec les recommandations qui seront concrétisées par les projets et programmes proposés au Chapitre 9.

⁽¹⁾ Population estimée selon les taux de croissance décrits au chapitre 3 § 3.1.2.

Tableau 5.1 - Répartition des localités et des populations du Mali en 1989 et 2001 (estimations) par classe de localités et tranche de population

L	OCALITES				1989					2001	
4157	ALAGORO DAD	NOM	BRB DB	LOCALIT	38	POPULATI	ON	NB. LOC	ALITES	POPULATI	ON
CATE- GORIB	CLASSES PAR TRANCHE DE	TOTA	\L	BQUII	PB	BABLI B	* PAR	BARA!	% PAR	#0#47 P	X PAR
	POPULATION	Nb.	X	Nb.	x	TOTALE	CLAS- SE	TOTAL	CLAS- SE	TOTALE	CLAS- SB
1	2	3	4	5	6	7	8	9	10	11	12
	Inf. à 400 hab.	5.234	51.1	1.766	34	1.125.842	21.8	4.653	46.5	1.000.427	17.8
4 ,	400 - 800 hab	3.142	30.7	1.344	43	1.809.745	35.1	3.059	30.6	1.804.881	32.0
VILLAGES	800 - 1200 hab	1.134	11.1	589	52	1.110.658	21.5	1.344	13.4	1.337.822	23.8
	1200 - 1600 hab	504	4.9	231	46	698.402	13.5	624	6.2	883.719	15.7
	1600 - 2000 hab	229	2.2	127	55	413.074	8.1	328	3.3	604.556	10.7
	TOTAUX VLG	10.243	100	4.057	(40)	5.157.721	100	10.008	100	5.631.405	100
	2000 - 3000 hab	253	69.1	160	63	615.303	59.8	359	64.7	864.536	54.0
CENTRES	3000 - 4000 hab	87	23.8	55	63	298.285	29.0	138	24.9	475.575	29.7
RURAUX	4000 - 5000 hab	26	7.1	16	62	115.316	11.2	58	10.4	260.11?	16.3
	TOTAUX CR	366	100	231	(63)	1.028.904	100	555	100	1.600.228	100
ADVEDDO	5000 - 7500 hab	37	78.7	28	76	227.821	75.4	56	66.7	329.309	58.8
CENTRES SEMI-	7500 - 10.000hab	10	21.3	8	80	74.510	24.6	28	33.3	231.875	41.2
URBAINS	TOTAUX CSU	47	100	36	(77)	302.331	100	84	100	561.184	100
CENTRES UI	RBAINS (> 10.000)	22	-	22	100	1.415.849	-	31	-	2.310.406	-
	MILIBU RURAL	10.609	99	4.288	40	6.186.625	78.3	10.563	98.9	7.231.633	71.6
TOTAUX	MILIBU URBAIN	69	1	58	84	1.718.180	21.7	115	1.1	2.871.590	28.4
	ENSEMBLE HALI	10.678	100	4.346	41	7.904.805	100	10.678	100	10.103.223	100

Col. 4, 8, 10 et 12 : pourcentages par rapport au total de la classe correspondante

Col. 6 : pourcentage par rapport au total de la tranche de population.

Il est à noter que selon la classification de la DNHE, sont considérés comme faisant partie des centres urbains (pop. sup. à 10.000 hab), tous les chefs-lieux de Région et de Cercle quelle que soit leur population (en 1989, sur 46 chefs-lieux de Cercle plus le district de Bamako, 13 ont moins de 10.000 hab et 10 moins de 5.000 hab). De même, sont considérés comme centres ruraux, tous les chefs-lieux d'Arrondissement quelle que soit leur population (en 1989 sur 281 chef-lieux d'Arrondissement plus 19 communes, 101 ont moins de 2.000 habitants et 3 ont plus de 10.000 hab).

Dans le Schéma Directeur, au niveau des calculs de besoins en eau et au niveau de la programmation (Chapitre 9), il n'a pas été tenu compte de cette particularité car on ne peut préjuger de l'équipement qui sera décidé pour les chefs-lieux qui ont une population inférieure (ou supérieure) aux normes retenues pour le Schéma Directeur, surtout s'il ne peut se justifier financièrement. Ce sera à l'Administration d'en décider au moment voulu et de modifier le Schéma Directeur en conséquence.

5.2. SITUATION ACTUELLE

Au cours de la Décennie Internationale de l'Eau Potable et de l'Assainissement 1980-1990 (DIEPA), le Mali a fait des efforts considérables pour l'approvisionnement en eau potable de ses villes, centres et villages: le taux de desserte des populations est passé de 5 % en 1980 à près de 40 % en 1989 (selon la nouvelle norme de 20 l/j/hab recommandée par le 3e Atelier de la DIEPA, Décembre 1988). Pourtant, aujourd'hui, la situation est peu satisfaisante puisque globalement environ près des 2/3 de la population n'a pas accès à un point d'eau potable, soit près de la moitié de la population urbaine (47 %) et des trois cinquièmes de la population rurale (62 %) (Tableau 5.4). Quant à l'Assainissement, les quelques progrès réalisés dans les villes ont été vite dépassés par l'extension rapide de celles-ci tandis qu'en zone rurale tout reste encore à faire.

5.2.1. Alimentation en eau du milieu urbain

En 1989, 69 localités (*Tableau 5.1*) sont considérés comme centres urbains (22 localités de plus de 10.000 habitants, y compris Bamako) ou semi-urbains (47 localités de 5.000 à 10.000 habitants). Ces localités totalisent 1,72 millions d'habitants, soit 21,7 % de la population 1989 du Mali.

Parmi ces 69 localités, 24 sont équipées d'un système d'adduction d'eau potable (Tableau 5.2):

- 13 centres urbains, les plus peuplés, sont correctement gérés par le Service des Eaux de l'Energie du Mali (EDM) et alimentés à partir des eaux de surface (10) ou des eaux souterraines (3);
- 11 centres dont 3 urbains, 5 semi-urbains et 3 ruraux mais chef-lieux de Cercle, sont gérés par des comités locaux avec l'aide de la DNHE; l'éloignement et le manque de spécialistes sur place font que ces villes ont souvent de longues ruptures de distribution d'eau. Toutes sont alimentées à partir des eaux souterraines.

A noter que 5 autres centres dont 3 urbains, 1 semi-urbain et 1 rural, sont en cours d'équipement par la DNHE à partir d'eaux souterraines: Koutiala (52.254 hab), San (32.242 hab), Goundam (12.690 hab), Niafunké (6.037 hab), Kadiolo (4.604 hab).

CENTRES	AVEC	ADDUCTION	ORI-	BOD	LONG!		. (CAPACITES		NB. MO MEGRES E		COT ANKU	NSOMMATI BULES (1	OHS (:a)		POP BT	LVAX CON. NYALISH	DESSE Vertur			cok	SONHAT 1/j/ba	ious beil
TYPES	7728	HOM	GINE	POP. 1989 [11000]	TOT.	rar dad.	STOCK	POMPAGE	RAP.	PAR	FäR	ANY	AUI	TOTALE	PAR	.P.	PAR	B.F.	TOTAL	1E	AUX	1117	BK- Sen-
(GERES PAR)			ps.v	(21000)	(11)	(1)	STOCK (a)	(a .1/b)	6/1	ÄÄ	jöür	AUX B.P.	B.P.	(1)	POP. (X1900)	X	POP. (11000)	×	POP. (11000)	x	D.P.	AVX B.F.	BLE
	C	1	2	3	4	5	8	7	8	9	16	11	12	13	14	15	16	17	18	19	20	21	22
URBAINS	CP	BANAEO	¥	710	260	0,37	15.600	2.250	8.7	3.900	8,2	6315	139	6754	160.0	23	190.5	27	350.5	50	168	6	53.0
(BDX)	R1 R2 R3 R4 C4	KATES ROULIKORO SIKASSO SEGOU(1) WARKALA(1)	RRR	75 21 74 106	18 18 60	0,78 0,85 0,12 0,57	1.200 400 800 1.100	380 90 80 290	J.2 4.4 10.0 3.8	1.200 2.300 3.100 2.300	3.3 6.3 6.3	150 190 235 605	18 15 63	454 208 250 668	17.0 6.5 6.7 11.7	23 31 9 11	9.2 5.7 5.2 19.0	12 27 7 18	26.2 12.2 11.9 30.7	35 58 16 29	73 80 95 142	9 9	17.7 16.7 57.1 59.6
	R5 R6 R7 C1 C1 C2	NOPTI TOMBOUCTOU CAO EITA NIORO EATI ROUGOUNI	P P P P P P P P P P P P P P P P P P P	75 75 75 75 75 75 75 75 75 75	39 13 50 18 30 28	5585065 5585065 5585065	1.500 350 500 900 800 2.300	250 75 115 120 100 100	6.0 4.3 7.5 11.0 23.1	1.800 2.500 2.500 1.100 1.300 2.400	000-00000	220	20 24 22 24 22 24	147 185 302 134 127 242 57	12.9 6.9 10.6 7.4 6.3 10.9	17 21 19 32 35 31 25	150702	2 18 1 32 1 20	14.4 12.8 11.2 14.3 6.5 17.9	1526550	94 66 77 40 55 57	999990	85.4 39.2 73.3 25.8 36.7 25.8
URBAINS (DNBB)	C5 C5 C6	BAMDIAGARA DJERNB DIRB	F	11 13 10	-	0,56	30 30 30	10 60 70	3.0 0.5 0.4	3.300 1.650 80 0	9.42	10	33 99 64	33 99 61	0.6	5	2.9 12.4 5.2	26 95 52	2.9 13.0 5.2	26 190 52	50	31 19 30	3'.0 19.0 30.0
ENSEMBLE		TOTAUL	9/2	1284	574	-	25.080	3.990	-	31.150	7	9220	804	10024	263.3	-	272.9	-	535.7	•	-	-	•
URBAINS		MOYBHNES	€/₹	-	38	0,45	1.672	266	6.1	2.190	5,7		<u> </u>	<u> </u>		20.5		21.2	<u> </u>	41.7	74	12.5	51.2
SEMI- URBAINS (DMAB)	C1 C2 C2 C5 C5	TBLINAPB EANGABA NARA DOVENTZA EORO	PPP	857-86	20.2 5.5 34.8 2.5	2.52 1.11 5.40 0,31	30 30 30 39	9 10 27 60	3.7 5.0 11.1 0.5 3.0	3.200 3.650 2.000 1.300 2.200	80.05 10.5 5.6 6.0	10	25 38 45 81 22	25 38 55 91 22	0.6 -		8.0 5.0 3.4 1.8 1.9	100 100 49 22 24	8.0 5.0 4.0 1.8	100 100 57 22 24	50	9 20 35 120 32	9 20 35 120 32
ENSEMBLE SENI-URBA	THE	TOTAUL	5/P	36	€3.0	-	159	115	٠	12.350	-	10	211	221	0.6	-	20.1	-	20.7	•		-	-
SEBI-ANDU	110	MOTENHE		-	12.6	1,75	30	23	1.3	2,479	6.8	-	<u> </u>	<u> </u>		1.7	-	55.8		57.5	50	28	29
BURAUI (DNBB)	63 64 83	TOROSSO FONINIAN EOUBORE	P	3 2 3	1.4 1.6 9.8	0,48 0,82 0,27	30 30 30	8 5 3	3.7 6.0 10.0	2.750 4.406 3.650	7.5 12.1 10.5	-	22 22 11	22 22 11	:	:	2.9 2.0 2.3	95 98 78	2.9 2.0 2.3	95 98 78	-	21 30 13	21 30 13
ENSEMBLE	<u> </u>	TOTAUX	2/8	8	3.8	-	90	18	-	10.806	-	-	55	55	-	-	7.2	-	7.2	-	-	-	-
RURAUS		HOTENHES	1/P	-	1.3	0,48	30	5.3	6.6	3.600	9,9	-	-		-		-	90	-	90		21	21
BUSBUBLES		TOTAUX (mriondis)	9/6	1528	541	-	25.320	4.121		54.300	-	9.230	1070	10300	263.4	-	300.2		563.6	-			-
ABDUCTION DES	S	EOTENNES (erroadics)	13/F 1/P	-	27.8	6,48	-1,160	179	6.1	2.360	5,5	-		-	-	19.8	-	82.8	-	{2.4	96	9,7	50

LEGEMUE:

Col. 0 = R = Chef lieu de Région, C = de Cercle. A = d'Arrondissement + numéro de la Région, CP = capitale

Col. 2 = R = adduction d'eau à partir d'une rivière, P = d'un forage, P = d'un puits

Col. 15, 17 et 19 : pourcentages par rapport à la population totale de la localité

Col. 20, 21 et 22 : col. 11, 12 et 13 respectivement divisées par 365 et par col. 14, 15 et 18 respectivement

[1] Il s'agit de chiffres de production d'eau en Lête du réseau. Les componations réelles, compte tenu des pertes, sont donc inférieures ainsi que les taux de couverture d'autant que les anyennes calculées englobent des consommations autres qu'humaines et domestiques (industrics, administration,...)

[2] Ségon et Marbala sont desservis par le même 35stème.

Sources : Parport du Je Atelier de la DIEPA sur l'approvisionnement en eau potable en milieu urbain et Communication de l'EDM

Le tableau 5.2 permet de montrer que:

- * A Bamako: 50 % de la population⁽¹⁾ sont couverts par le réseau EDM, environ à moitié par branchements privés (BP) (23 %) et bornes fontaines (BF) (27 %). La consommation moyenne est de 53 l/j/hab avec 108 l/j/hab aux BP et seulement 6 aux BF. Les pompes ne seraient utilisées que 8 heures par jour en moyenne, avec des variations journalières importante selon les heures et les saisons (débit de pointe), et sans tenir compte des pertes sur le réseau.
- * Dans les grandes villes (EDM): 30 % en moyenne de la population sont couverts, 19 % par BP et 11 % par BF, la consommation moyenne étant de 50 l/j/hab avec 73 l/j/hab aux BP contre 9 l/j/hab aux BF. Les pompes ne sont utilisées que 5 à 6 heures par jour.
- * Dans les plus petites villes (DNHE): 62,5 % de la population sont couverts, essentiellement par des BF (61.3 %), la consommation moyenne étant celle aux BF, soit autour de 30 l/j/hab. Les pompes sont utilisées 6 heures par jour en moyenne.

D'une manière générale, on constate donc que les habitants des villes recourent encore, en grande proportion (50 à 60 %), aux points d'eau traditionnels (puits de concessions, rivières, forages privés) alors que les capacités de pompage (et de stockage) ne semblent pas être utilisées à leur maximum; théoriquement, en pompant 16 heures par jour, on couvrirait la totalité des besoins dans toutes ces villes, sous réserve toutefois de limiter les pertes et d'étendre les réseaux de distribution.

En fait, cette sous-utilisation apparente des systèmes d'adduction d'eau est dûe:

- au déphasage entre l'extension des réseaux et celle beaucoup plus rapide de la population, notamment dans les quartiers périphériques, à cause de l'exode rural; ainsi, des quartiers entiers ne sont pas desservis;
- au coût du branchement (environ 120.000 F.CFA pour un raccordement de 10 m) trop élevé pour beaucoup de familles à revenu modeste;
- au prix du m³ d'eau au BP qui, sans être prohibitif (90 F.CFA, y compris 10 F de taxe d'assainissement, pour la lère tranche de 50 m³/mois), rend parfois les factures lourdes à payer pour les abonnés les plus modestes;
- enfin au prix du m³ d'eau à la BF (250 F/m³ à raison de 5 F par seau de 20 1) jugé beaucoup trop cher par les usagers, même s'ils s'en rendent moins compte en payant l'eau au rythme de leur consommation journalière.

Globalement, pour l'ensemble du milieu urbain (Tableau 5.4), on constate que dans la situation actuelle :

- 563.600 habitants (urbains et semi-urbains) sont couverts par des systèmes d'adduction d'eau potable, soit 33 % de la population urbaine;
- ces habitants sont regroupés dans 24 agglomérations représentant 35 % des localités urbaines et semi-urbaines;

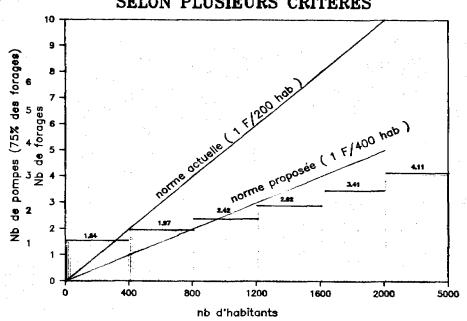
⁽¹⁾ Les taux de couverture réels doivent être inférieurs car les pertes du réseau et les usages autres que la consommation humaine (industrie, administration,...) n'ont pas été pris en compte car non communiqués par l'EDM à la date d'édition de ce rapport.

- 350.000 habitants (urbains + semi-urbains) sont couverts par des points d'eau de type hydraulique villageoise (forages équipés de pompe, puits modernes), soit 20 %;
- au total 913.600 habitants des villes ont accès à l'eau potable soit 53 % de la population urbaine qui consomment 12,85 millions de m³ d'eau potable par an (9,4 sur les eaux de surface et 3,45 sur les eaux souterraines), soit en moyenne (théorique) 36,5 l/j/habitant;
- 805.200 habitants, soit 47 %, s'alimentent aux points d'eau traditionnels (puits de concessions, puisards, mares et rivières) et consomment 4,4 millions de m³ d'eau de mauvaise qualité par an selon une norme de 15 l/j/hab;
- au total, le milieu urbain consomme 17,26 millions de m³ d'eau par an.

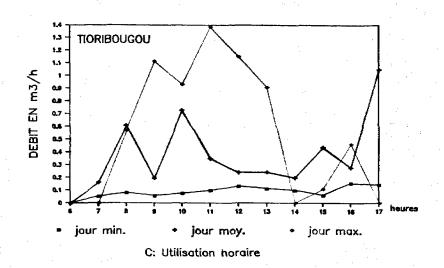
5.2.2. Alimentation en eau du milieu rural

A la fin de 1988, les programmes d'hydraulique villageoise avaient exécuté environ 8.580 forages positifs dont 5.827 équipés de pompes à motricité humaine. A ces 5.827 points d'eau exploités, il faut ajouter les 1.341 puits modernes, ce type d'ouvrage étant, selon la norme adoptée par la DNHE, l'équivalent d'un forage équipé d'une pompe manuelle (Annexe 5B).

Ce sont donc au total, 7.168 points d'eau modernes qui sont utilisés début 89 en milieu rural. On ne tient pas compte ici d'un pourcentage estimé à 20 % de pompes en panne ou détériorées, ni de diverses autres pompes (solaires, diésel).


Le milieu rural compte en 1989 10.609 localités réparties entre 10.243 villages et 366 centres ruraux (*Tableau 5.1*). La population totale de ces localités est de 6.186.625 avec 5.157.721 dans les villages et 1.028.904 dans les centres ruraux. Elle représente 78,3 % de la population du Mali (65,3 % pour les villages et 13 % pour les centres ruraux).

En théorie, si les points d'eau étaient répartis de façon homogène entre les villages, 67,6 % des localités disposeraient d'un point d'eau ou bien 1 point d'eau desservirait 863 personnes, soit une couverture à 46,3 % de la population rural selon la norme retenue par le 3e Atelier National de la DIEPA, 1 point d'eau productif pour 400 personnes (Tableau 5.3).


En réalité, ce taux de couverture de 46,3 % est très surestimé pour les deux raisons essentielles suivantes :

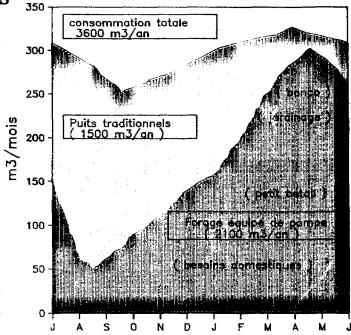
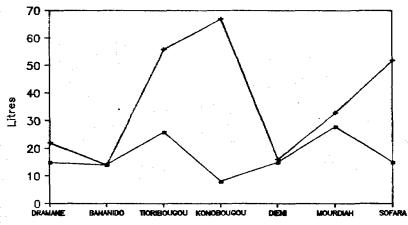

- étant donné qu'on a appliqué précédemment la norme de 40 l/j/hab, soit 1 forage pour 200 habitants et que plus de 50 % des villages (5.234 en 89) ont moins de 400 habitants, mais ne représentent que 22 % de la population rurale (Tableau 5.1), une forte proportion de localités se retrouve suréquipée par rapport à la nouvelle norme (Figure 5.1.A);
- les pompes à motricité humaine peuvent normalement débiter 8 m³/j en moyenne mais sont généralement sous-utilisées: c'est ce qui ressort de l'enquête et des mesures sur les moyens d'exhaure villageois réalisée par le projet MLI/84/005 [SDM/SOC/5]. Dans le tableau 5.3, on a adopté une norme intermédiaire d'utilisation de 6,5 m³/j, qui est également sans doute surestimée puisque les mesures, certes partielles, donnent une moyenne de 3,5 m³/j en période chaude où la consommation d'eau est maximum (Figures 5.1.B, C et D). Ceci est dû à plusieurs facteurs décrits aux § 5.4.3 et 5.4.4 ci-après.

Figure 5.1: GRAPHIQUES DE REPARTITION DES FORAGES PRODUCTIFS ET D'UTILISATION DES POMPES SELON PLUSIEURS CRITERES



A: Nombre de forages productifs dans les villages de différentes tailles

B: Variation schématique de l'utilisation de l'eau du forage et des puits traditionnels pour couvrir les besoins en eau d'un village de 200 habitants

Frequentation max

+ Debit max

D: Quantité pompée par habitant

Tableau 5.3 - Situation actuelle de l'approvisionnement en eau du milieu rural (1989) en hydraulique villageoise par Région

	CENTRES (2000 -	RURAUX(1) 5000 hab)	(400	LLAGES - 2000 hab)	EN:	SEMBLE IEU RURAL	N	MBRE D	R LOCALI EN	TES D 989	ESSERVII	88))(B'	NBRE D' FORAG	B POINT BS BQUI	S D'EAU PES DE	MODERN POMPES	BS (PUI MANUELL	TS BS)	
REGIONS	Nb.	Population	Nb.	Population 1989	Nb.	Population 1989	CBN° Rura		VILL	GES	ENSE	(BLB		CENTRES RURAUX		,	VILLAGE	S		ENSEKBL	B
	***	1989 (esti m ée)		(estimée)		(esti née)	Nb.	×	Nb.	x	Nb.	*	P	P	T 0 T	p	F	T 0T	P	P	TOT
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1. KAYES	78	218.625	1.444	755.144	1.522	973.769	64	82	476	33	540	36	31	204	235	198	812	1.010	229	1.018	1.245
2. KOULIKORO	56	159.556	1.852	923.329	1.908	1.082.885	44	72	793	43	837	44	9	164	173	142	1.490	1.632	151	1.654	1.805
3. SILASSO	71	202.652	1.736	956.736	1.807	1.159.388	62	80	776	45	838	46	7	192	199	124	1.160	1.284	131	1.352	1.483
4. SEGOU	53	143.092	2.170	1.010.663	2.223	1.153.755	34	64	1.174	54	1.208	54	19	153	172	411	1.354	1.765	430	1.507	1.937
5. MOPTI	55	150.935	2.024	978.099	2.079	1.129.034	15	27	715	55	730	35	15	29	44	271	153	424	286	182	468
6. TOMBOUCTOU	20	57.507	671	309.230	691	366.737	8	40	108	16	116	17	10	37	47	104	36	140	114	73	187
7. GAO	33	96.537	346	224.520	379	321.057	4	12	15	4	19	5	•	13	13	-	30	30	-	43	43
TOTAUX (KOYENNES)	366	1.028.904	10.243	5.157.721	10.609	6.186.625	231	(63)	4.057	(40)	4.288	(40)	91	792	883	1.250	5.035	6.285	1.341	5.827	7.168

⁽¹⁾ Jusqu'en 1989, les CR ont été équipés conne les villages (forages et ponpes mnauelles).
(2) La norme de 6,5 m³/j par pompe manuelle est une moyenne pondérée entre le débit optimum de la pompe (8 m³/j) et le débit moyen d'utilisation mesuré au cours de l'enquête en 2e, 4e et 5e Régions (3,5 m³/j).
Col. 23 = (col. 16 x 6,5 m²/j x 365j x 10⁻³) en milliers de m³/an (idem col. 26 et 29)
Col. 24 = (col. 23 : 365j : 20 l/j/hab) (idem col. 27 et 30)
Col. 25, 28 et 31 = pourcentage par rapport à la population corresp. de la Région (col. 3, 5 et 7)
Col. 32, 34 et 36 = (col. 3, 5 et 7 - col. 24, 27 et 30) respectivement et arrondi au millier
Col. 33, 35 et 37 = (col. 32, 34 et 36 respectivement X 15.10⁻³ X 365.10⁻³).

Tableau 5.3 (Suite)

	con	VERTURES DES BQUIPES (Nor	BESOI)	NS EN BAI 20 1/j/h	U PAR LES PU ab} (Débits	ITS MOI	DERNES E Liera de	T LES FORAGI m³/an)(2)	S	PAR I	COUVE POINTS D	RTURE DES 1 'BAU TRADIT!	BESOINS 1	BN BAU (15 1/j/bab)
REGIOUS	CB	NTRES RURAUX			VILLAGES			ENSERBLE		CENTRES E	RURAUI	VILLA(GES	ENSEKI	BLB
	DEBIT (101m1/ an)	POPULATION COUVERTE	*	DEBIT (10 ³ m ³ / an)	POPULATION COUVERTE	*	DEBIT (103 m3/ an)	POPULATION COUVERTE	x	POPULATION COUVERT (arrondie)	DEBIT (103 m3/ an)	POPULATION COUVERTE (arrondie)	DEBIT (103 m ³ / an)	POPULATION COUVERTS (arrondie)	DEBIT (103 m ³ / an)
	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
1. RAYES	560	77.000	35	2.390	328.000	43,4	2.950	405.000	41,6	142.000	780	427.000	2.340	569.000	3.120
2. KOULIKORO	410	57.000	36	3.870	530.000	57,4	4.280	587.000	54,2	103.000	560	393.000	2.150	496,000	2.710
3. SIEASSO	470	65.000	32	3.050	417.000	43,6	3.520	482.000	41,6	138.000	760	540.000	2.960	678.000	3.720
4. SEGOU	410	56.000	39	4.190	574.000	56,8	4.600	630.000	54,6	87.000	480	437.000	2.390	524.000	2.870
5. MOPTI	100	14.000	99	1.000	138.000	14,1	1.100	152.000	13,5	137.000	750	840.000	4.600	977.000	5.350
6. TOMBOUCTOU	110	15.000	26	340	45.000	14,6	450	60.000	18,4	43.000	230	264.000	1.440	307.000	1.670
7. GAO	30	4.000	4	70	10.000	4,5	100	14.000	4,4	92.000	500	214.000	1.170	306.000	1.670
TOTAUI (MOYENNES)	2090	288.000	(28)	14.910	2.047.000	(39,6)	17.000	2.330.000	(37,7)	742.000	4.060	3.115.000	17.050	3.857.000	21.110

Le tableau 5.3 montre la situation de l'hydraulique villageoise par Région en 1989 (y compris les centres ruraux de 2.000 à 5.000 habitants équipés jusqu'à présent en presque totalité selon les normes de l'hydraulique villageoise).

Il met en évidence les faits suivants :

- les 4 premières Régions du Mali sont comparativement bien couvertes, entre 40 et 55 % de la population, par rapport aux 3 autres Régions (15 % en 5e et 6e Régions, 4.5 % seulement en 7e Région) où le nombre de forages équipés est extrêmement faible (nul en 7e Région). Ceci est surtout marqué à Mopti où il n'y a, en moyenne, qu'un forage pour 6.200 habitants, contre 765 sur Ségou, 860 sur Sikasso, 655 sur Koulikoro, 960 sur Kayes. Ceci s'explique du fait de l'abondance des eaux de surface et des nappes alluviales peu profondes exploitées par des puits et puisards traditionnels auxquels les habitants de cette Région recourent majoritairement;
- les centres ruraux sont sous-équipés puisque bien que près des 2/3 (63 %) disposent d'au moins 1 forage équipé ou d'un puits moderne, moins d'un tiers (28 %) des besoins est couvert;
- les villages sont globalement couverts en proportions égales pour ce qui est de leur nombre et de leur population (40 %), mais ceci cache une plus grande disparité par Région et surtout par tranche de population;
- les 4.057 villages et les 231 centres ruraux équipés de points d'eau modernes productifs, soit 40 % du total, consomment, selon la nouvelle norme adoptée, 17 millions de m³ d'eau par an;
- à raison de 20 l/j/hab, ce sont donc 2.330.000 ruraux qui ont accès à l'eau potable soit 37,7 % de la population rurale;
- 3.857.000 ruraux (62.3 %) continuent de s'alimenter aux points d'eau traditionnels et consomment, selon la norme adoptée de 15 l/j/hab, 21 millions de m³ d'eau par an;
- au total, le milieu rural consomme 38 millions de m³ d'eau par an.

La carte de la figure 5.1 montre les taux de couverture selon les Arrondissements et met en évidence la desserte plus élevée dans les Régions occidentales (sauf l'est de Kayes) et méridionales (Régions 1 à 4).

La carte de la figure 5.2 montre la répartition, par Arrondissement, du nombre moyen d'habitants par pompe et met en évidence les mêmes déséquilibres que la carte des taux de couverture, avec cependant une vaste zone centrale en Régions 1, 2 et 3 où l'on observe des valeurs inférieures à 400 hab/pompes, donc des secteurs où l'on compte un certain nombre de villages suréquipés en pompes.

Sur l'ensemble du Mali, les statistiques du tableau 5.4 donnent une estimation de la couverture et des consommations moyennes de la population :

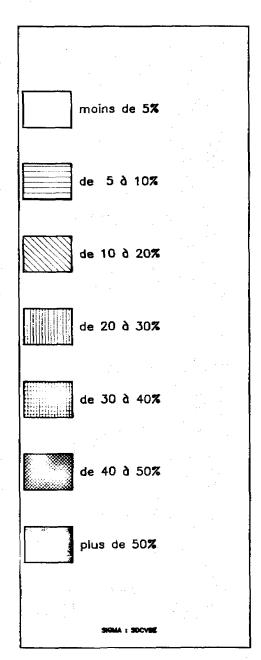
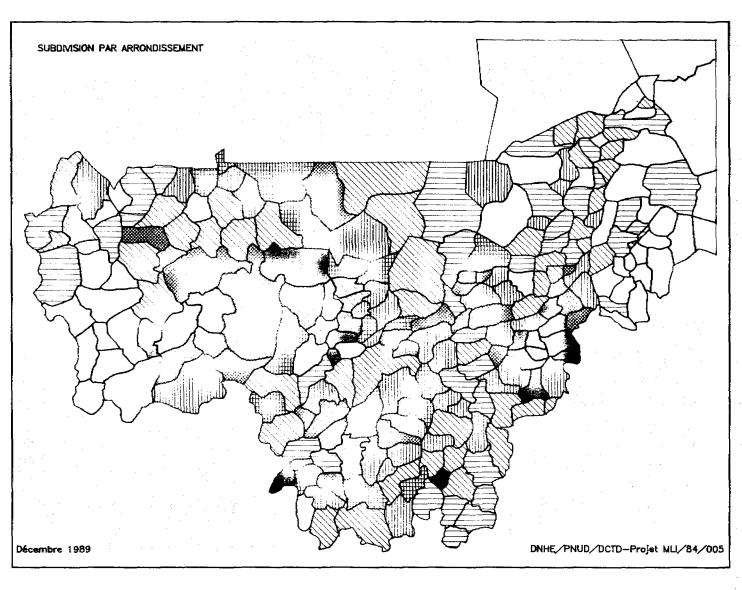
- 3.243.600 personnes ont accès à une eau potable soit 39,2 % des 7.904.805 personnes constituant la population du Mali en 1989 (Annexe 5).
- elles consomment au total près de 30 millions de m³ d'eau potable par an (soit une consommation théorique de 25 l/j/habitant) dont 9,5 millions à partir des eaux de surface (villes) et 20,5 millions à partir des eaux souterraines (milieu rural essentiellement);

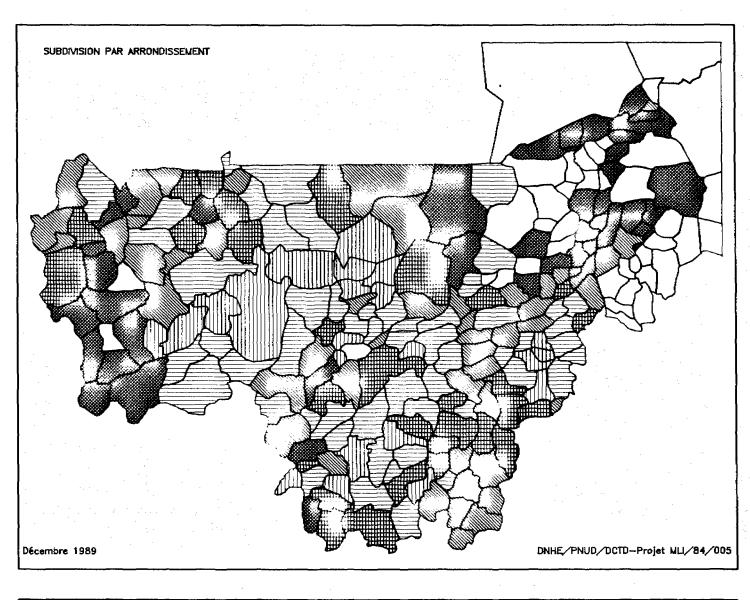
Tableau 5.4 - Récapitulatif des dessertes et consommations d'eau pour les besoins humains en 1989 en milieux urbain et rural (voir détails sur tableaux 5.2 et 5.3)

		BN Nor	BR8 1989	POPULATION		DESSE	RTE PAR SI BAU	YSTEME AL	DOUCTION				HYDRAULIQUE LAGROISE		COUVERTURE EN BAU PO	3 1989 TABLE
MIFIEA	CATEGORIES DE LOCALITES	TOTAL	BQUIPES (ABP ou	TOTALE EN 1989 (estimée)	Par BAUX DE	par BAUX SOUTER-	ENSEMBLE	l en l	COUVERTU BN 198		NANURT- PORPES Par	CONSON. NOY. (1/j/ bab)	COUVERTU EN 198		POPULATION	x
			HV)		SURPACE	RAINBS		1/j/hab (4)	POPULATION	X	LES	(5)	POPULATION	X		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	C. URBAIN	22	16	1.415.849	9.400	620	10.020	51	535.700	41,7	1.710	20	235.000(3)	16,6	770.700	54,4
URBAIN (avec système ABP)	C. SEMI-URBAINS (+ C. RURAL) ⁽¹⁾	4?	(5+3) ⁸	302.331	-	280	280	27	27.900	9,2	840	20	115.000(3)	38,1	142.900	47,3
	S/TOTAL	69	24	1.718.180	9.400	900	10.300	50	563.600	32,8	2.550	20	350.000	20,4	913.600	53,2
RURAL (Eydraulique villageoise)	C. RURAUX + VILLAGES	366 10.243	363 4.100	1.028.904 5.157.721	-	-	-	-	•	•	17.000	20	2.330.000	37,7	2.330.000	37,7
•	TOTAUX	10.678	4.487	7.904.805	9.400	900	10.300	50	563.600	7,1	19.550	20	2.680.000	33,9	3.243.600	41,0

^{(1) 3} Centres Ruraux disposent d'une adduction; les autres 363 sont inclus en hydraulique villageoise
(2) 7.168 pompes + puits modernes x 6.5 m³/j x 365
(3) Il s'agit des populations urbaines alimentées par des postes autonomes (forages et pompes) et donc inclus dans l'hydraulique villageoise
(4) Calcul par rapport à la population desservie et non par rapport à la population totale
(5) Horme actuellement adoptée pour l'hydraulique villageoise
Col. 4, 5, 6, 10, 18 et 19 = les valeurs indiquées sont en 10³m³/an
Col. 9 = col. 8 : col. 2, en %
Col. 14 = col. 8 + col. 12
Col. 15 = col. 14 : col. 2, en %
Col. 18 = col. 6 + col. 10 + col. 18

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI


Figure 5.2

TAUX DE COUVERTURE DES BESOINS EN EAU PAR LES POMPES ET PUITS

. .

Figure 5.3

NOMBRE MOYEN D'HABITANTS PAR POMPE

Cn. o

- 25,4 millions de m³ d'eau consommée proviennent des points d'eau traditionnels auxquels recourent 4.662.200 personnes;
- au total, le volume annuel prélevé sur les ressources en eau pour l'alimentation des populations du Mali est voisin de 56 millions de m³ dont 10 millions sur les eaux de surface et 46 millions sur les eaux souterraines.

Il faut évidemment considérer tous ces chiffres avec prudence car ils sont établis à partir de normes de consommation unitaire fixées sur une estimation des consommations moyennes des populations basées sur des enquêtes et mesures partielles. Il faut donc surtout retenir les ordres de grandeur.

5.2.3. Assainissement

Aucune étude d'envergure nationale et bien documentée, notamment en milieu rural, n'a été faite sur la situation actuelle de l'assainissement au Mali, pas plus que sur les niveaux de service, sur les technologies, les coûts ou les besoins. Le bilan établi pour le 3e Atelier de la DIEPA est significatif. En effet, la Direction Nationale de l'Hygiène Publique et de l'Assainissement avance les taux de couverture suivants:

* En zone urbaine

- les excreta et les eaux usées sont évacués à 93 % (moins de 1 % par les égouts, 20 à 35 % par les fosses septiques et fosses étanches et plus de 60 % par les latrines ordinaires);
- les déchets solides sont évacués à raison de 52 à 77 % à Bamako (2 % par collecte individuelle dans les quartiers à haut standing et le reste sur des dépôts collectifs), mais à raison de seulement 5 % dans les autres villes;
- les eaux de ruissellement sont évacuées dans le centre de Bamako par 250 km de caniveaux (généralement mal entretenus et de toute façon insuffisants en période de pluie) et par 40 km de caniveaux seulement dans les autres quartiers de Bamako, par 10 à 100 km de caniveaux dans les capitales régionales et par moins de 10 km en moyenne dans les autres villes.
- * En zone rurale, où la situation est beaucoup plus préoccupante, seuls les excreta sont évacués, généralement par des latrines ordinaires, et 1 village sur 100 seulement est doté d'un système de compostage individuel ou collectif des produits organiques récupérés sur les déchets solides.

Les investissements prévus au cours du Plan actuel (1987-91) et leurs taux de réalisation ont été les suivants :

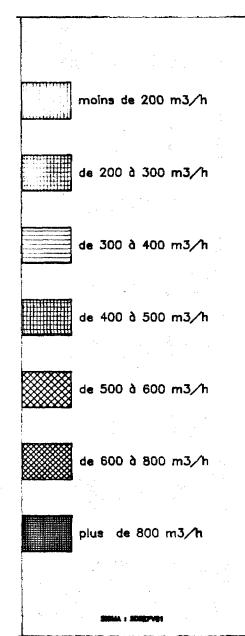
	INVEST (10° E	ISSEMENTS F.CFA)			X DE SATION
Excréta et eaux usées		10,8		40	%
Evacuation eaux pluviales		6,3		35	%
Déchets solides		4,9		3	%
TOTAL		22,0	MOYENNE	30	%

5.2.4. Conclusions

L'analyse de la situation actuelle révèle que les responsables du développement au Mali se sont attaqués résolument, au début des années 80, au problème de l'eau potable tant en milieu urbain (mais surtout dans les grandes villes) qu'en milieu rural. Cependant, l'ampleur des besoins, l'adoption de normes trop élevées et la sous-estimation des contraintes techniques, financières et surtout humaines ont minimisé l'impact de cet effort. Ainsi, les objectifs de la DIEPA qui étaient de couvrir 50 % des besoins en 1989 n'ont pas été atteints complètement. Les efforts et les sommes considérables investies dans les programmes d'alimentation en eau potable urbains et villageois (1) ont permis d'obtenir des résultats spectaculaires mais insuffisants. Ceci doit inciter à revoir la politique et les stratégies appliquées jusqu'à maintenant. C'est ce que le présent Schéma Directeur se propose de faire en évaluant les besoins d'équipement selon des normes plus réalistes et en donnant au Chapitre 8 les grandes lignes des stratégies qu'il conviendrait d'approfondir et de mettre en oeuvre pour parvenir à une meilleure adéquation des ressources et des besoins.

5.3. BESOINS

La notion de besoins est ambigüe, relative et évolutive :


- ambigüe, car elle englobe, selon les circonstances, des besoins objectifs ou minima (par ex. 3 à 6 l/j/hab d'eau de boisson pour les humains, 20 à 30 l/j/UBT pour le bétail) et des besoins subjectifs: besoins de quantité et de qualité, besoins de proximité ou encore besoins globaux ou supplémentaires par rapport aux quantités fournies par les points d'eau traditionnels. Il faut donc faire la distinction entre la notion de besoins ressentis et la notion de normes d'équipement en points d'eau modernes (ou de normes de consommation);
- relative et évolutive, car les besoins dits subjectifs sont liés aux habitudes sociologiques et aux conditions de vie du moment et du lieu considéré. Ainsi, les besoins en eau, même s'ils sont aujourd'hui jugés couverts pour les différentes catégories de population du Mali (soit par les puits traditionnels soit par les systèmes modernes, et pour les différents usages), varieront en fonction de l'évolution des mentalités, des habitudes de vie, de la valeur attachée à l'eau, de l'habitat, voire des techniques utilisées. Après l'an 2000, les besoins ressentis seront très certainement plus élevés qu'aujourd'hui et il faudra sans doute inciter à une certaine spécialisation des différents types de points d'eau en fonction des usages de l'eau. En outre, il sera demandé, plus qu'aujourd'hui, que l'eau potable soit disponible à la concession même pour les besoins domestiques. Ceci est une évolution normale de la demande en eau qu'il faut d'ores et déjà prévoir, donc préparer et planifier.

Dans le cadre du Schéma Directeur, on a établi tout d'abord les besoins réalistes en se basant sur des consommations per capita telles qu'on peut les évaluer aujourd'hui sachant qu'elles évolueront sans doute à la hausse d'ici 2001. On a ensuite fixé des normes en fonction de consommations pondérées selon les catégories d'utilisation. Appliquées aux différentes catégories de populations estimées en 2001, ces normes conduisent à une estimation des volumes d'eau nécessaires pour atteindre un taux de couverture de 100 % d'ici 2001.

^{(1)- 7,5} milliards de F.CFA pour l'hydraulique urbaine entre 84 et 88 (dont 3 pour Bamako) et 13 milliards programmés pour la durée du Plan 87-91 [5/1 - part. 2].

^{- 56.5} milliards de F.CFA pour l'hydraulique villageoise entre 1985 et 1992.

^{- 22} milliards de F.CFA pour l'Assainissement entre 1980 et 1988.

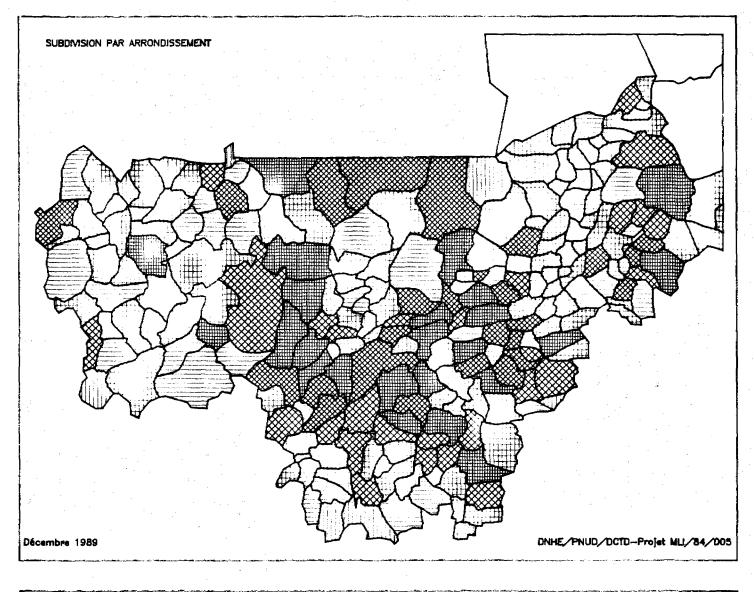


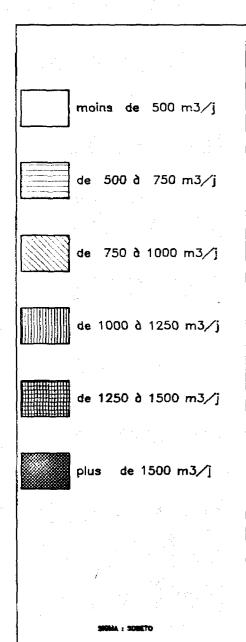
Figure 5.4

BESOINS EN EAU VILLAGEOIS A L'HORIZON 2001

5.3.1. Quantification et répartition des besoins optima en eau

Les Comités de développement des différentes Régions du Mali ont proposé en 1986 [5-2] des chiffres de consommation optimale per capita qui se révèlent très proches les uns des autres pour différents types de besoins et ceci dans 5 milieux différents. Ces chiffres, adoptés ici pour calculer les besoins globaux en l'an 2001 (fin du 3e plan quinquennal), sont synthétisés dans le tableau 5.5 ci-après.

La répartition des besoins en eau par Arrondissement est représentée sur les cartes de la figure 5.4 pour les besoins en eau villageois en l'an 2001 et de la figure 5.5. pour les besoins en eau des populations et du bétail en 2001 (Chapitre 6).


Tableau 5.5 - Besoins en eau optima per capita et globaux selon les usages et les catégories de localités, en l'an 2001

CATEGORIES		BESO	IN PER CAP	ITA		BESOINS GLOBAUX BN 2001			
POPULATION	domesti- que(1)	artis.	jardins (2)	Ţ	otaux	Population (Annexe 5)	Besoins arrondis		
	(1/j/hab)	(1/j/hab)	(1/j/hab)	(1/j/hab)	(m ³ /a/hab)	(en Killions)	(en Hm ³ /an		
- Bamako	70	20	10	100	36,5	1,34	50		
- Centres urbains	60	12	8	80	30	0,97	30		
- Centres semi- urbains et ruraux	38	8	9	55	20	2,16	43		
- Villages	25	2	18	45	16,5	5,23	85		
- Zones désertiques	15	-	<u>-</u>	15	5,5	0,40	2		
TOTAUX						10,10	210		

1 - Les besoins domestiques sont répartis comme suit (en 1/j/hab)

	Boisson	Cuisine/ vaisselle	Toilette/ linge	Arrosage	Totaux	
Nomades	3	2	10	-	15	
Ruraux	5	7	13		25	
Centres	6	10	22	-	38	
Ville	6	14	30	10	60	
Bamako	. 6	16	33	15	70	

- 2 Pour les villes et centres ruraux, il s'agit de l'arrosage des jardins publics et privés et du nettoyage de la ville.
 - Pour les villages, 18 1/j/hab correspondent à l'arrosage de 30 m² de jardin de concession (10 hab/concession) à raison de 6 mm/jour, soit 180 1/j.

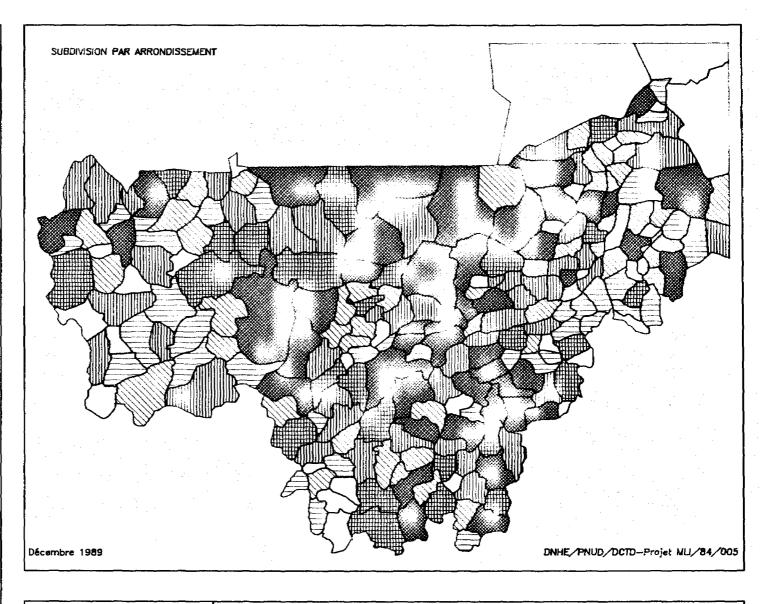


Figure 5.5

BESOINS EN EAU DES POPULATIONS ET DU BETAIL

5.3.2. Normes quantitatives

Elles portent sur les consommations unitaires en fonction des équipements adoptés par le Schéma Directeur selon la taille des localités :

Pour les systèmes d'adduction en eau potable complets dans les centres urbains et sommaires dans les centres semi-urbains et ruraux [5-1], on a distingué 3 niveaux de desserte avec pour chacun un pourcentage de population décroissant aux BP et croissant aux BF:

	Branchements privés (100 l/j/hab)	Bornes fontaines (25 l/j/hab)	Ensemble Population	Consommation moyenne (1/j/hab)
Haut	75 %	25 %	100 %	81,25
Moyen	50 %	30 %	80 %	57,50
Bas	10 %	50 %	60 %	22,50

Pour les villages, la nouvelle norme est celle proposée par la DIEPA [5-1] de 20 l/j/hab (1 forage équipé d'une pompe manuelle à 8 m³/j/hab pour 400 habitants). Elle est inférieure de moitié à la norme utilisée auparavant, soit 40 l/j/hab (1 forage de 8 m³/j par tranche de 200 habitants).

Dans le cadre du Schéma Directeur, on propose donc d'appliquer les normes suivantes :

* pour Bamako: 1/3 de chaque niveau de desserte, soit :

$$\frac{81,25 + 57,5 + 22,5}{3} = 53,75 \text{ arrondi à} \frac{54 \frac{1}{j}}{hab}$$

* pour les autres centres urbains: 1/4 des normes haute et moyenne et 1/2 de la norme basse, soit :

$$\frac{81,25 + 57,5}{4} + \frac{22,5}{2} = 45,94 \text{ arrondi à} \frac{46 \text{ l/j/hab}}{2}$$

* pour les centres semi-urbains et ruraux: 1/4 de la norme moyenne et 3/4 de la norme basse, soit :

$$\frac{57,5 + 3(22,5)}{4} = 31,25 \text{ arrondi à} \frac{31 \frac{1}{j}}{hab}$$

* pour les villages (nouvelle norme): 20 l/j/hab

Selon ces nouvelles normes, le tableau 5.6 montre l'augmentation des besoins pour une couverture à 100 % et les taux de satisfaction par rapport aux normes maximales.

Tableau 5.6 - Estimation des besoins et de leur taux de couverture en 1989 et en 2001 selon les normes du SD et les types d'agglomérations (voir Tableaux 5.1)

CATEGORIES DE LOCALITES (selon classement du Schéma)	NORMES DU SCHENA DIRECTEUR		SITUATION en 1989			PRBVISIONS 2001						
			i	BRSOINS	COUVER- TURE en	1 1	POPU- BBS	BESOINS	BESOINS SUPPLEM. en 10 ⁵ m ³ /an (9 - 6)	MENTA-	BESOINS MAX. (tableau 5.5 (10 ⁶ m ³ /an)	COUVERTURE p.r. aux BESOINS MAX. (9/12)
	en 1/j/ hab	en m³/an /hab	LATION (X10°)	106 m3/an	10% m ³ /an (tab.5.2 5.3)	(6/5)	(X10 ⁶) 10 ⁶ m ³ /an					
1	2	3	4	5	6	1	8	9	10	11	12	13
BANAKO	54	19,7	0,71	14,0	6,8	49	1,34	26,4	19,6	3,9	50	53 %
C. URBAINS	46	16,8	0,70	11,8	5,1	43	0,97	16,3	11,2	3,2	30	54 %
C. SEMI-URBAINS ET RURAUX	31	11,3	1,33	15,0	3,2	21	2,16	24,4	21,2	7,6	43	57 %
VILLAGES	20	7,3	5,16	37,7	14,9	40	5,63	41,1	26,2	2,8	87	47 %
TOTAUX (moyennes)			7,90	78,5	30,0	38	10,10	108,2	78,2	3,6	210	-51,5 X

On constate ainsi que malgré l'application de normes relativement modestes, on ne couvrirait en 2001 avec des systèmes modernes d'approvisionnement en eau potable que la moitié des besoins ressentis. Ceci revient à dire que bien que la couverture soit assurée à 100 % en 2001 selon les normes adoptées, la moitié des besoins estimés continuera à être couverte par les points d'eau traditionnels. L'application des normes proposées ici représente cependant un effort considérable puisqu'il faudrait d'ici 2001 mettre à la disposition des habitants de Bamako des volumes quadruples de ceux consommés en 1989, des volumes trois fois supérieurs pour les centres urbains et les villages et près de huit fois supérieurs pour les centres semi-urbains et ruraux.

5.3.3. Normes qualitatives

Les normes OMS et Schoëller en matière de qualité chimique et bactériologique devraient pouvoir être respectées presque partout, grâce à la qualité naturelle des eaux superficielles ou souterraines ou par traitement (filtration, floculation, décantation, neutralisation, injection d'eau de Javel). Cependant, si le coût du traitement se révèle trop élevé pour approcher ces normes, on pourra se référer aux normes moins sévères établies par la DNHPA et la DNHE pour le Mali (Annexe 6).

Ce dernier facteur d'augmentation élevé s'explique par le fait que l'on compte passer, d'ici 2001, de l'hydraulique villageoise dont les normes ont été appliquées jusqu'à présent à ces deux catégories de localités, à des adductions d'eau sommaires.

5.4. ADEQUATION RESSOURCES/BESOINS

5.4.1. Eaux superficielles

Pour les 6 grandes villes qui sont alimentées à partir du Niger (Bamako, Kati, Koulikoro, Ségou, Markala, Mopti), les débits unitaires qui seront pompés dans le Niger et qui passeront de 8,32 millions de m³/an en 89 à 32,5 millions de m³/an en 2001, seront très inférieurs aux débits d'étiage de ce fleuve, grâce notamment aux "lachers" du barrage de Sélingué [5-3]; il en sera de même pour Kayes (0,46 à 1,8 millions de m³/an) sur le fleuve Sénégal avec le barrage de Manantali.

Pour les 3 autres villes (Kita, Bougouni et Sikasso), il y a actuellement des problèmes pendant l'étiage du fait du déficit pluviométrique chronique. Pour sécuriser l'alimentation en eau de ces villes, la solution devrait être trouvée soit en stockant de l'eau derrière un barrage (solution coûteuse mais sûre), soit en recourant aux eaux souterraines. A noter qu'à Bougouni, les recherches d'eau souterraine effectuées par le projet ont montré que ces ressources y étaient limitées [HDG/RGL/2].

5.4.2. Eaux souterraines

La comparaison 1989-2001 du tableau 5.6 montre que les débits globaux supplémentaires à exploiter en l'an 2001, par forages et puits modernes à partir des ressources en eaux souterraines pour couvrir les besoins en 2001, selon les normes du Schéma Directeur, sont de l'ordre de 50 millions de m³/an (besoins supplémentaires totaux en 2001: 78,2.106 m³/an moins la part soutirée sur les eaux de surface = 25,5.106 m³/an).

A ce débit supplémentaire, il faudrait ajouter celui qui sera puisé dans les nappes superficielles par les puits traditionnels pour couvrir les besoins maxima (selon les normes optimales du tableau 5.5), c'est-à-dire de l'ordre de 100 millions de m³/an (210 moins 108.2 millions de m³/an) en l'an 2001.

Ce seraient donc, au total, de l'ordre de 150 millions de m³ d'eau par an qui pourraient être prélevés sur les eaux souterraines pour couvrir les besoins optima en 2001 (selon le tableau 5.5): or, au Chapitre 4, on a montré que les ressources renouvelables des aquifères du Mali sont de l'ordre de 55 milliards de m³/an, dont 50 milliards de m³ pour les nappes de type fissuré situées pour l'essentiel dans les régions les plus peuplées du Mali. On voit donc que globalement les ressources sont immensèment supérieures aux besoins. Cependant, selon les aquifères, l'adéquation sera évidemment plus ou moins aisée; par exemple, pour les nappes superficielles en relation hydraulique avec les aquifères sous-jacents, il faudra améliorer et approfondir les puits traditionnels pour garantir la pérennité des points d'eau.

5.5. CONTRAINTES ET RECOMMANDATIONS

En ce qui concerne l'alimentation en eau potable, les contraintes, et les recommandations susceptibles de les réduire ou de les supprimer, sont liées essentiellement au type de système choisi pour cette alimentation et au type, à la disponibilité et à la pérennité de la ressource en eau.

Pour les plus grandes villes, en général supérieures à 10.000 habitants, le système d'adduction d'eau (stations de pompage et de traitement, stockages mutiples de grande capacité, réseaux étendus, nombreux BP) sera alimenté majoritairement à partir des eaux de surface.

Pour les villes intermédiaires, ou centres semi-urbains, et les centres ruraux (2.000 à 10.000 habitants), le Schéma Directeur propose un équipement constitué par une adduction d'eau simplifiée basée essentiellement sur un réseau de bornes fontaines qui sera alimenté, dans la plupart des cas, à partir des eaux souterraines.

Pour les villages, on appliquera les techniques éprouvées de l'hydraulique villageoise pratiquées jusqu'à présent (forage et pompe à motricité humaine) mais sans négliger pour autant un certain nombre d'alternatives technologiques intéressantes (puits modernes, puits traditionnels améliorés, forage mécanique de puits).

D'autres contraintes importantes apparaissent au niveau des moyens d'exhaure, de la morphologie et du contexte socio-économique et de l'assainissement; toutes influencent le coût de l'eau et son recouvrement et, par la-même, conditionnent le succès des programmes d'alimentation en eau potable.

5.5.1. Ressources en eau et types de système d'approvisionnement

a) Systèmes d'adduction d'eau complet des villes

Alimentées actuellement en eau potable essentiellement à partir des fleuves et rivières, leur consommation devrait quadrupler d'ici l'an 2001. Pour y parvenir, il faudra, outre la recherche de ressources en eau complémentaires, notamment pour les 3 villes déjà citées:

- réduire les pertes des réseaux,
- accroître les durées de pompage et les capacités de stockage,
- accroître les diamètres et la longueur des réseaux pour couvrir les nouveaux quartiers,
- multiplier les bornes fontaines dans les quartiers à faibles revenus pour rendre l'eau potable plus accessible,
- parallèlement, revoir la tarification de l'eau pour rendre sa consommation plus accessible financièrement aux revenus plus modestes,
- enfin, pour les villes de Bamako, Kati, Bougouni et Ségou-Markala, augmenter sensiblement la capacité des stations de pompage et de traitement au cours du Plan quinquennal 1996-2001.

Etant donné le déphasage entre les besoins et la déserte actuelle de ces villes et les délais qui seront nécessaires pour le combler, on pourrait appliquer aux quartiers non desservis, et qui ne le seront pas avant le 3e Plan, et aux nouveaux quartiers une solution temporaire qui consisterait à les équiper, là où c'est possible, de postes autonomes constitués d'un forage, d'une pompe, d'un petit réservoir surélevé et de quelques bornes fontaines.

b) Systèmes d'adduction d'eau sommaires des centres semi-urbains et ruraux

Alimentés à partir des eaux souterraines pour la majorité d'entre eux, la contrainte sera la localisation, à proximité de la localité, de forages à gros débit qui influencent le moins possible le niveau d'eau dans les puits traditionnels (les études de simulation déjà faites montrent qu'en général la baisse du niveau statique des puits avoisinants consécutive à l'exploitation du forage est faible, inférieure aux fluctuations saisonnières).

Le potentiel actuel de création de systèmes d'adduction d'eau sommaires dans les centres semi-urbains (5.000 à 10.000 hab.) et ruraux (2.000 à 5.000 hab.) est montré par le tableau 5.7 ci-après. Etabli sur la base des données de SIGMA, il montre qu'en 1989:

- 187 centres, soit 45 % des 413 centres ruraux (366) et semi-urbains (47), sont dotés d'au moins 1 forage d'hydraulique villageoise d'un débit exploitable égal ou supérieur à 5 m³/h,
- les 3/4 des centres sont situés dans des zones de conditions hydrogéologiques favorables (312 sur 413) où des débits minima de 5 m³/h sont disponibles ou peuvent être trouvés sans difficulté particulière.

Dans les 187 centres équipés de forages de 5 m³/h et plus, on pourra soit utiliser le ou les forages existants après alésage et tubage en fonction du diamètre (4 à 6" en général) et de la profondeur de la pompe à installer, soit, ce qui est le plus souvent préférable, exécuter un nouveau forage à proximité immédiate (5 à 15 m environ).

Pour les autres centres, il faudra prévoir une reconnaissance préalable, suivant les techniques habituelles, légère pour les centres des catégories 3 et 5 aux conditions hydrogéologiques favorables, plus approfondie pour ceux des catégories défavorables 4 et 6.

Dans tous les cas, on essaiera chaque fois que possible d'obtenir le débit d'exploitation maximum et au plus près du centre de la localité de manière à pouvoir valoriser les éventuels surplus d'eau pour la micro ou petite irrigation ou d'autres utilisations permettant de rentabiliser au mieux les investissements (Chapitre 9 § 9.2.1 et Fiches de programme B8 à B14).

c) Hydraulique villageoise

Les puits modernes ont été jusqu'à présent six fois moins nombreux que les forages à cause de leur coût (double de celui des forages) et de la durée de leur exécution (10 fois plus longue). Cependant, pour les grosses consommations d'eau (abreuvement de troupeaux, construction de banco, irrigation,...), les populations rurales donnent leur préférence aux puits [SDM/SOC/5]. Il faudra donc améliorer les conditions de leur réalisation et notamment, dans les terrains tendres, expérimenter des méthodes de havage mécanique.

Tableau 5.7 - Potentiel actuel de réalisation de systèmes d'adduction d'eau sommaires dans les Centres semi-urbains et ruraux par Région, à partir des eaux souterraines.

	CENTRES CENTRES				DUMBDO		ሞለቁ ፤ ፤				NO	BRE DE	CENT	RES SI	MI-UR	BAINS I	T RUR	AUX			
1	REGION	SEMI-URBAINS		1	CENTRES TOTAL CENTRES 00-5000 hab)		CLASSES PAR CATEGORIE				AVEC PORAGE		SANS FORAGE		CONDITIONS FAVORABLES		COND. DB- FAVORABLES				
	KRGION	Nb.	Pop. 1989 (estimée)	Nb.	Pop. 1989 (estimée)	Nb.	Pop. 1989 (estimée)	Cat.	Cat.	Cat.	Cat.	Cat.	Cat.	TOT (1+2+ 3+4)	x	TOT (5+6)	X	TOT (1+2+ 3+5)	×	TOT (4+6)	x
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1.	RAYES	6	36.720	78	218.625	84	255.345	28	16	11	17	10	2	12	85.7	12	14.3	65	77.4	19	22.6
2.	KOULIKORO	11	68.925	56	159.556	67	228,481	17	17	13	8	2	10	55	82.1	12	17.9	49	73.1	18	26.9
3.	SIKASSO	7	41.454	71	202.652	78	244.106	29	16	13	11	3	6	€9	88.5	9	11.5	61	78.2	17	21.8
4	SEGOU	8	55.458	53	143.092	61	198.550	13	12	9	6	12	9	40	65.6	21	34.4	46	75.4	15	24.6
5.	KOPTI	9	58.021	55	150.935	64	208.956	16	4	1	3	28	12	24	37.5	40	62.5	48	75.0	16	25.0
6.	TORBOUCTOU	5	35.955	20	57.507	25	93.462	9	1	1	2	5	7	13	52.0	12	48.0	16	64.0	9	36.0
7.	GYO	i	5.798	33	96.537	34	102.335	7	2	2	2	16	5	13	38.2	21	61.8	27	79.4	7	20.6
TO	TAUX	47	302.331	366	1.028.904	413	1.331.235	119	68	50	49	76	51	286	•	127	-	312	-	101	-
PO	URCENTAGES	11.4	22.7	88.6	77.3	100	100	28.8	16.4	12.1	11.9	18.4	12.4	•	69.2	+	30.8	-	75.5	-	24.5

Catégories :

ategories:
1 - Centres ayant au moins 1 forage de débit exploitable supérieur à 10 m³/h
2 - Centres ayant plusieurs forages de débit exploitable compris entre 5 et 10 m³/h
3 - Centres ayant 1 forage de débit exploitable compris entre 3 et 5 m³/h
4 - Centres ayant des forages de débit inférieur à 3 m³/h
5 - Centres n'ayant pas de forage mais situés dans une zone de conditions hydrogéologiques favorables
6 - Centres n'ayant pas de forage et situés dans une zone de conditions hydrogéologiques défavorables.

Col. 13/14 = Total des catégories 1, 2, 3 et 4 Col. 15/16 = Total des catégories 5 et 6 Col. 17/18 = Total des catégories 1, 2, 3 et 5 Col. 19/20 = Total des catégories 4 et 6

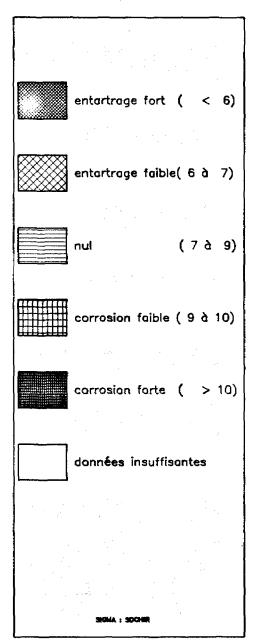
N.B = 3 CR + 5 CSU sont déjà équipés et 2 CSU en cours : ils n'ont pas été décomptés dans le tableau.

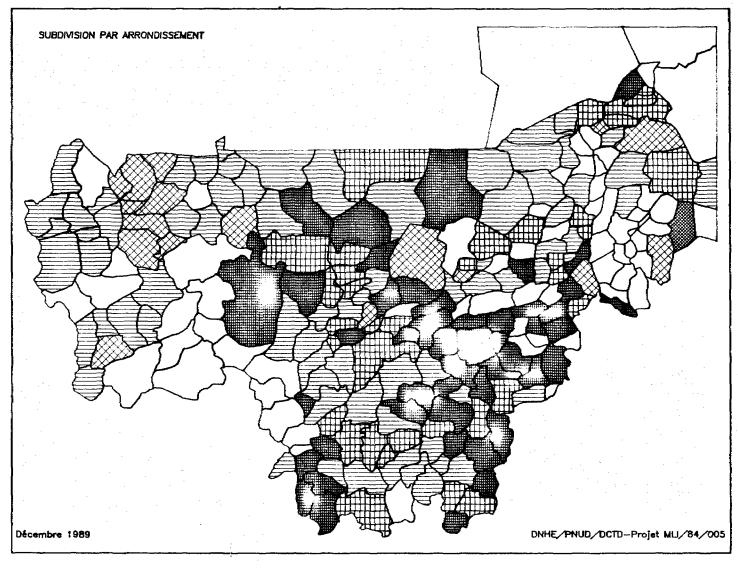
Le coût des forages pour l'hydraulique villageoise peut aussi être amélioré: profondeur inférieure pour les petits débits requis, expérimentation en zones de terrains tendres et alluviaux de méthodes de forage au battage et de pointes filtrantes.

Enfin la coordination et la complémentarité entre les deux types d'ouvrages et d'entreprises devront être recherchés.

Dans les villages comme dans les villes, les puits traditionnels resteront encore longtemps une importante source d'approvisionnement en eau construits artisanalement. Ils requièrent souvent un fastidieux travail périodique de remise en état. Leur amélioration par curage, cuvelage sommaire, couverture et éventuellement approfondissement par des puisatiers traditionnels formés devra être encouragée.

5.5.2. Moyens d'exhaure


Le type d'exhaure dépend essentiellement, sauf limitation de débit, de la quantité d'eau nécessaire pour couvrir les besoins. Pour les villes, on a recours aux pompes à moteur diésel ou électrique tandis que la pompe à motricité humaine est consacrée au milieu rural. La pompe solaire est un moyen intermédiaire qui pourraitêtre appliqué aux centres ruraux et éventuellement semi-urbains.


En effet, les pompes solaires devraient être prises davantage en considération, concurremment avec les pompes à moteur diésel, pour les adductions d'eau sommaires (et aussi pour l'irrigation). Bien que le Mali ait la plus large expérience du pompage solaire au Sahel (111 pompes à énergie solaire au Mali sur 170 dans les 7 pays du CILSS), ce type d'exhaure ne s'est pas vraiment encore développé, principalement à cause du coût de l'investissement initial et des travaux de génie civil associés. Pourtant cette pompe qui utilise un énergie renouvelable et gratuite, pourrait devenir très abordable pour l'alimentation en eau des centres de 1000 à 3000 hab (au-delà, la motopompe diésel peut se justifier). En effet les constructeurs annoncent une baisse de 50 % du coût des panneaux photovoltaïques dans les 15 ans qui viennent si cette technologie se développe. A ce sujet, il faudra suivre de très près, sur les plans technique, économique et organisationnel, l'installation dans la région de Mopti des 225 pompes solaires que le FED finance pour des adductions d'eau sommaires et de la petite irrigation villageoise [5-4].

Par ailleurs, si les pompes à motricité humaine se sont imposées au Mali à cause de leurs qualités ergonomiques, on estime que 20 % à 30 % en moyenne sont régulièrement en panne, souvent plus pour des raisons d'organisation ou de coût de réparation que pour des raisons techniques. Sur le plan technique, la nouvelle pompe Vergnet et la pompe India fabriquée au Mali par EMAMA sont fiables techniquement. A 30 m, la pompe India est moins chère que la pompe Vergnet (225.000 F.CFA contre 410.000). Mais lorsque le pH est bas et les eaux agressives (Figure 5.6), il faut remplacer les tringles et le cylindre en acier galvanisé de la pompe INDIA par des pièces en INOX; le prix atteint alors 455.000 F.CFA pour un débit qui reste cependant supérieur à celui de la pompe Vergnet. Les contraintes majeures demeurent encore l'entretien et la réparation des pompes ainsi que la disponibilité des pièces détachées, contraintes d'autant plus fortes qu'il y a un nombre élevé de marques différentes de pompes.

Enfin, pour les villages les plus importants et certains centres ruraux, la pompe à traction animale qui ne s'est pas encore développée au Mali, pourrait être utilisée car, du fait du plus grand débit obtenu par ces pompes, on pourrait ainsi réduire le nombre de forages et de pompes manuelles et donc les contraintes qui leur sont associées.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

AGRESSIVITE DES EAUX (selon l'indice de RYZNAR)

Figure 5.6

CII. 3

5.5.3. Morphologie des agglomérations

Les contraintes liées aux agglomérations dépendent de la localisation, de la taille, de la forme des villages et des centres et de la densité de leur habitat. Cet aspect de l'habitat rural a été peu étudié au Mali. Il a pourtant son importance en ce qui concerne l'implantation des ouvrages et donc le transport de l'eau puisque l'un des buts des programmes d'approvisionnement en eau est de rapprocher au maximum l'eau potable du consommateur.

L'une des contraintes majeures provient de la taille des villages (plus de 45 % des villages ont moins de 400 hab) et de leur extrême dispersion même dans les zones de forte densité (Figure 5.7). La moyenne est de 22 villages seulement pour 1000 km² sur les 5 premières Régions, soit une distance moyenne entre villages de 7 km. Ceci a une forte implication sur le coût des déplacements des machines de forages, des équipes de puisatiers ou des réparateurs de pompes, d'autant plus que les pistes sont en général en mauvais état et souvent impraticables durant l'hivernage.

Par contre, pour les Arrondissements où la densité des villages est supérieure à 50 pour 1000 km2, (soit une distance moyenne entre village de 4 à 5 km), on pourrait envisager, à terme et dans certains cas, une adduction d'eau sommaire alimentant plusieurs villages proches d'un même forage.

Un autre contrainte est liée à la densité de l'habitat. En effet, sauf dans le Pays Dogon, la dispersion des concessions est souvent très grande. De plus, dans chaque village administratif, il y a plusieurs quartiers et parfois des hameaux ethniques ou de culture éloignés du centre, d'où l'impossibilité de localiser le point d'eau à moins de 200 m⁽¹⁾ de toutes les cases. Les villages circulaires de 200 m de rayon (12,5 ha) constituent probablement une exception même dans les villages de moins de 400 habitants. Une étude plus précise démontrerait la grande utilité de développer le transport de l'eau en fûts sur des charettes en accordant des facilités de crédit pour acheter cet équipement. L'enquête sur les moyens d'exhaure a montré que les villageois (et surtout les villageoises) sont prêts à payer l'eau pour éviter de longs transports répétitifs (étant donné le faible volume transporté) et épuisants, sans compter les files d'attente à la pompe.

Dans les centres ruraux et semi-urbains, la densité de l'habitat est sans doute plus forte, mais probablement inférieure aux densités connues dans les villes (100 hab/ha à Goundam, 60 à Bougouni et 20 à San). Une étude de la Banque Mondiale en 1984 [5-5] affirme que "les adductions d'eau présentent des économies d'échelle importantes (voir § 5.4.5.) et seraient rentables à partir de 800 hab et une densité de 80 personnes par ha". Comme ce n'est que rarement le cas, même dans les centres les plus importants, ce sont la forme et la densité de l'habitat qui détermineront le nombre et la localisation des bornes fontaine et par suite la longueur des conduites. On constate déjà dans les systèmes existants (Tableau 5.2) que, dans les centres gérés par la DNHE, la longueur moyenne du réseau est de 0,75 m/hab (sans compter Nara: 5,4 m/hab) alors qu'elle est de 0,5 m/hab pour les grandes villes et 0,37 m/hab à Bamako.

⁽¹⁾ L'enquête sur les moyens d'exhaure a montré qu'au-delà de 200 m à parcourir, les villageois ont tendance à délaisser la pompe au profit de points d'eau traditionnels plus proches s'il en existe.

5.5.4. Contexte socio-économique

On traitera ici, en complément des Chapitres 2 et 3, de la capacité d'organisation pour gérer les points d'eau et de paiement de l'eau.

a) Gestion des points d'eau

Actuellement, l'Etat a la charge de concevoir, promouvoir, financer et réaliser les équipements hydrauliques tandis que les populations ont le devoir de les entretenir et de les gérer.

Au niveau des villages, le bilan actuel, si on se fie aux résultats des enquêtes, montre que les comités de gestion mis en place à l'occasion de l'installation des pompes sont le plus souvent formels et ne fonctionnement pas [SDM-SOC-5]. Ceux qui fonctionnent le mieux sont ceux formés à l'initiative des villageois et où les femmes sont présentes.

On devra donc associer de plus en plus les bénéficiaires à la conception (situation et rôle des différents types de points d'eau), au financement et à la réalisation (participation financière et en nature, amélioration des puits traditionnels) des ouvrages qui leur sont destinés et dont ils doivent se sentir propriétaires, donc responsables. Ceci est une condition essentielle de réussite et entre d'ailleurs dans les vues de l'Etat qui voudrait se désengager au maximum de l'exploitation et de la maintenance des équipements.

Le réseau de réparateurs villageois et d'artisans-réparateurs fonctionne en général assez bien dans les zones où il est encore supervisé par des projets DNHE. Il faudra cependant le perfectionner pour éviter des abus, l'homogénéiser et l'associer à un réseau commercial de distribution de pièces détachées qui pourrait être organisé au niveau de mécaniciens privés régionaux ou sous-traité aux fabricants ou installateurs de pompe qui devraient remplacer progressivement les brigades de la DNHE pour les grosses réparations (Chapitre 9: Fiches de projet A2 et A5).

Dans les centres ruraux et semi-urbains, la gestion des futures adductions d'eau sommaires pourrait s'inspirer de celle des quelques centres déjà équipés et gérés par la DNHE avec un comité de gestion, éventuellement renforcé par de jeunes diplômés, contrôlant l'action du gardien, du mécanicien et des fontainiers, le recouvrement des redevances et l'utilisation des fonds pour l'entretien et les réparations du système.

Cependant, malgré la présence, dans ces centres, d'administrateurs, d'artisans, parfois de mécaniciens, il n'est pas garanti que ces comités, même après formation, puissent assurer seuls la gestion des systèmes. La DNHE, qui appuie déjà les comités de gestion de 11 petites villes, pourrait éventuellement, après renforcement et régionalisation, prendre en charge la gestion des quelques 630 autres adductions programmées au Chapitre 9. Mais devant l'ampleur de ce programme, cette solutions ne peut être retenue à long terme alors que par ailleurs la DNHE envisage de se désengager de l'entretien des pompes manuelles. Il est évident qu'il faudra tôt ou tard recourir à une solution faisant intervenir le secteur privé ou parapublic et, ce, à un niveau de plus en plus décentralisé (chefs-lieux de Région, puis de Cercle).

Inf.à 12

12 à 21

21 à 32

32 à 48

SUBDIVISION PAR ARRONDISSEMENT Décembre 1989 DNHE /PNUD / DCTD - Projet MU /84/005

MCALA | SDREVI

Figure 5.7

DENSITE DES VILLAGES

b) Paiement de l'eau et recouvrement des coûts

Ce sera le facteur déterminant de la réussite de tout programme d'adduction d'eau et d'hydraulique villageoise.

L'un des résultats de la DIEPA, au Mali comme ailleurs, a été de remettre sérieusement en cause le principe de la gratuité de l'eau. Les populations rurales ont été de plus en plus sensibilisées (malheureusement sans une politique et des modalités homogènes) pour participer financièrement et en nature à l'installation de la première pompe et quelquefois même à l'exécution du forage (mais seulement pour un faible pourcentage du coût total), l'entretien et le renouvellement de la pompe étant entièrement à leur charge. Ainsi, malgré la faiblesse connue des revenus monétaires ruraux, on a été surpris de la capacité des villageois à dégager des sommes, parfois élevées, quand la pompe était ressentie comme une nécessité.

Il faudra donc explorer plus à fond cette capacité de payer l'eau et les modalités de recouvrement des coûts, sans oublier bien sûr le caractère social de l'hydraulique rurale et urbaine. Notamment, le désir de rentabiliser la totalité des investissements et des frais récurrents, en faisant payer l'eau au seau qui amène le prix du m³ d'eau à 250 F.CFA, limite considérablement l'utilisation de l'eau aux bornes fontaines (6 à 9 l/j/hab dans les grandes villes, 20 à 30 l/j/hab pour les petites villes), alors que les installations ont été construites ou conçues pour une consommation moyenne de 40 l/j/hab. Il est donc évident que le prix de revient du m³ d'eau à la borne fontaine devra être reconsidéré car actuellement dissuasif.

5.5.5. Coût de l'eau

L'un des objectifs majeurs de la prochaine décennie sera de faire baisser les coûts de l'eau au moyen de deux types d'actions complémentaires :

- abaissement du coût des travaux par une meilleure programmation, l'utilisation de technologies moins onéreuses, des procédures administratives et financières plus efficaces, le développement d'entreprises privées maliennes, une meilleure adéquation des ouvrages aux besoins (caractéristiques techniques),
- augmentation de la consommation d'eau en facilitant l'accès des utilisateurs à l'eau (amélioration du niveau de service) et rapprochement de l'eau vers les consommateurs).

En ce qui concerne plus particulièrement les adductions d'eau sommaires, le coût de l'eau ne devrait pas constituer une contrainte majeure puisque dans le tableau 5.8 ciaprès (voir également Chapitre 9 § 2.1), on constate que :

- le coût de l'eau avec ou sans amortissement est presque toujours inférieur au coût de l'eau en hydraulique villageoise classique (forage + pompe manuelle) et au coût de l'eau vendue au seau;
- le coût de l'eau diminue avec l'augmentation du nombre d'habitants: elle est pratiquement moitié moins chère pour un habitant d'une localité de 10.000 habitants que pour celui d'une localité de 2.000 habitants, ce qui montre qu'il existe bien un facteur d'économie d'échelle;
- le coût de l'eau serait encore plus bas si on tient compte de la forte proportion (75 %) de sites favorables où des forages de plus de 5 m³/h peuvent déjà être exploités ou implantés à moindre frais;

- le coût de l'eau à la pompe manuelle est du même ordre de grandeur qu'au poste autonome (système d'adduction extrêmement simplifié: forage, pompe à moteur diésel, petit réservoir sur abri de la pompe et 2 BF maximum). Ceci est dû à l'influence sensible de la consommation annuelle de la localité sur le coût du m³ d'eau. Ainsi s'explique également le coût élevé au puits moderne (investissement lourd) et à la pompe manuelle.

Il faudra donc, pour inciter les consommateurs à faire usage de leur système d'adduction sommaire, vendre l'eau à un prix incitatif. Mais, parallèlement, pour que le système soit quand même rentable, il faudra augmenter la consommation de l'eau en la rapprochant du consommateur. On peut proposer, dans un premier stade, de diminuer le volume du réservoir au bénéfice de la longueur des conduites de distribution et du nombre de bornes fontaines (d'où augmentation du nombre de consommateurs potentiels).

Il faudra également donner la priorité aux localités déjà équipées de forages à gros débit ou à celles où l'habitat est concentré. Il faudra enfin faire appel au maximum à la participation des habitants pour les travaux et à des technologies les plus simples possibles.

En ce qui concerne l'hydraulique urbaine, notamment les réseaux gérés par l'EDM, le coût du m³ d'eau au BP (80 F.CFA pour la lère tranche de 50 m³) est de moitié inférieur au prix de revient moyen de l'eau distribuée par les systèmes sommaires et trois fois inférieur à celui de l'hydraulique villageoise, ce qui confirme l'existence d'une économie d'échelle.

L'ordre de grandeur des investissements nécessaires pour couvrir les besoins en eau potable à l'horizon 2001 peut être estimé par des calculs directs à partir des chiffres du tableau 5.8. Cependant, dans la mesure où ces chiffres se réfèrent à des tranches plus ou moins larges de population, ces calculs restent très approchés.

Tableau 5.8 - Coûts moyens de l'eau selon différents systèmes d'alimentation en eau et en fonction de la taille des localités

	HYDRAULIQUE VILLAGEOISE			POSTES AUTONO- MES/ADDUCTION		ADDUCTION D'BAU SOMMAIRE			
	PUITS TRADI-	PUITS NODERNE	FORAGE + POMPE	VILLAGES (1000 -	CENTRES RURAUX	CBN' Rur <i>i</i>	PRES LUX	CBN' SBMI-UI	PRES RBAINS
A. NORMES	TIONNEL (160 hab)	(400 hab)	(400 MANUELLE)		(2000 - 3000 hab)	3000- 4000 hab	4000- 5000 hab	5000- 7500 hab	7500- 10000 hab
1 NORMES SD (1/j/hab) 2 CONS. MAX. (m³/j) 3 NB. MOY. HEURES POMPAGE 4 DEBIT MAX. POMPE (m³/h) 5. NB. FORAGES Q = 1 à 3 m³/h OU Q = 5 m³/h OU Q = 10 m³/h 6 CAPACITE RESERVOIR (m³) 7 NB BORNES PONTAINES 8 LONGUEUR UNITAIRE CONDUITE (km)	15 2.25 - - - -	20	2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 40 10 4 2 1 10 2 1	310 127.5 321 361.5	31 120 16 7.5 2 10 82	31 150 16 10 - 2 1 50 10 2.5	31 230 15 15 75 12	310 10 20 42 105 105 105

B. INVESTISSEMENTS (en millions de F.CFA)

1 PUITS OU FORAGE(S) 2 POMPE MAN./MOTEOR DIESEL 3 GROUPE ELECTROGENE 4 RESERVOIR 5 CONDUITES 6 BORNES FONTAINES 7 ABRI/CUVE GASOIL/CLOTURE	1.0	10.0	5.0 0.35 - - - -	10.0 1.2 1.0 5.0 2.0 0.6 1.5	10.0 2.4 2.0 13.5 3.0 2.0 2.0	12.5 2.8 2.0 15.0 4.0 2.5 2.0	12.5 3.0 2.5 15.0 5.0 2.0	12.5 2.5 17.5 17.6 3.0	15.0 3.5 3.5 25.0 10.0 4.5 2.0
TOTAUX	1.0	10.0	5.35	21.3	34.9	40.8	43.0	49.3	63.5
COUT PER CAPITA (F.CFA)	6.700	25.000	13.375	10.650	11.630	10.200	8,600	6.580	6.350

C. COUTS DE L'EAU (en millions de P.CFA) (extraits du rapport [SDM/ECO/2])

2 BNTRB	TISSIMENT ET FRAIS FINANCIERS TTIEN/REPARATION D'OBUVRE TRANTS, LUBRIFIANTS	0.1	0.9	0.6 0.1 -	2.5 0.8 0.5 0.3	4.1 1.0 1.5 0.5	4.8 1.2 2.0 0.6	5.1 1.5 2.5 0.8	5.8 1.8 3.0 1.2	8.2 2.1 3.5 2.2
TOTAU	X .	0.1	0.9	0.7	4.1	7.1	8.6	9,9	11.8	16.0
VOLUMB C	VOLUMB CONSORRE (m3/an)		2.920	2.920	14.600	33.950	45.260	56.575	84.860	113.150
COUTS DE	avec amortissement	120	310	240	280	210	190	175	140	140
L'EAU (F.CFA)	sans amortissement	-	-	20	110	90	85	85	70	70

COUTS UNITAIRES (en millions de F.CFA)

- Puits: 10 - Forage: 5

- Pompe manuelle: 0.35 - Pompe

- Groupe électrogène: 1 à 1.25 (HT)

- Conduite: 1 par km

- Borne fontaine: 0.3 Pompe à moteur : 1.2 à 1.75 (HT)

En hydraulique villageoise, les estimations sont beaucoup plus difficiles à établir compte tenu d'une part des villages de moins de 200 habitants qui ne seront pas, en principe, équipés, d'autre part des villages dont la population est intermédiaire par rapport aux tranches de 400 habitants (pour un village de 600 à 750 habitants, fera-t-on 1 ou 2 forages?). On a donc adopté un facteur de correction pour tenir compte des tranches de population.

Tableau 5.9 -Ordres de grandeur des investissements 1992-2001 en hydraulique villageoise

VILLAGES		FACTEUR		INVESTISSEMENTS 1992-2001					
Tranches de population	Nombre à desservir	I	ECTION		AIRE ons de CFA)	TOTAL (milliards de F.CFA)			
< 400	2.800	C	, 2	5	, 35				
400 - 800	400 - 800 1.850		1,5		, 35	15,0			
800 - 1.200	810	2	, 5	5,35		11,0			
1.200 - 1.600(1)	375	3,5	1	5,35	21,3	7,0	8,0		
1.600 - 2.000(1)	200	4,5	2	5,35	21,3	4,8	8,5		
TOTAUX	6.035					40,8	45,5		

(1) Deux coûts unitaires possibles selon le système adopté : hydraulique villageoise classique ou poste autonome.

L'investissement total prévu pour la programmation 1992-2001 proposée au Chapitre 9 atteint 72 milliards de F.CFA dont 38,5 milliards pour les forages équipés de pompe à motricité humaine contre 40,8 de milliards dans le calcul ci-dessus.

En ce qui concerne les adductions d'eau sommaire des centres ruraux et semiurbains, les ordres de grandeur s'établissent ainsi (Tableau 5.10).

Tableau 5.10-Ordres de grandeur des investissements 1992-2001 pour les adductions d'eau sommaires

CENTRES RURAUX ET S	SEMI-URBAINS	INVESTISSEMENTS 1992-2001					
Tranches de population	Nombre à équiper	UNITAIRE (millions de F.CFA)	TOTAL (milliards de F.CFA)				
2.000 - 3.000	359	34,9	12,5				
3.000 - 4.000	138	40,8	5,6				
4.000 - 5.000	58	43,0	2,5				
5.000 - 7.500	56	49,3	2,8				
7.500 - 10.000	28	63,5	1,8				
TOTAUX	639		25,2				

L'investissement proposé par la programmation 1992-2001 au Chapitre 9 est de 23,4 milliards de F.CFA, donc du même ordre de grandeur que le calcul direct ci-dessus.

En ce qui concerne les centres urbains, un tel calcul n'est pas possible car chaque ville est un cas particulier. Bien que la programmation décennale ne soit pas disponible, on peut cependant avancer un ordre de grandeur des investissements à prévoir d'ici 2001 basé soit sur un coût unitaire par habitant à desservir, de l'ordre de 16.000 F.CFA, soit sur la reconduction du rythme d'investissement du Plan en cours, soit 3 milliards de F.CFA par an (17,5 milliards de F.CFA programmés en 1987-1991).

Dans le premier cas, la population urbaine en 2001 sera de 2.310.000 habitants dont 536.000 actuellement desservie, soit 1.774.000 habitants à desservir d'ici 2001 et un coût de l'ordre de 28 milliards de F.CFA. Dans le second cas, le programme 1992-2001 atteindrait 35 milliards de F.CFA. On peut conclure que l'ordre de grandeur des investissements pour la période de programmation 1992-2001 se situera autour de 30 milliards de F.CFA.

5.5.6. Assainissement [5-1]

La faible priorité accordée aux actions et travaux d'assainissement par rapport aux autres programmes du Secteur Eau constitue la contrainte majeure; elle tient aux facteurs suivants [5-11, 5-12]:

- une insuffisance de sensibilisation des populations en matière d'assainissement et d'hygiène,
- le peu d'intérêt de la plupart des bailleurs de fonds pour le financement des programmes de ce sous-secteur, à l'exception, en ce qui concerne le secteur rural (villages et centres ruraux), de l'UNICEF et de la Banque Mondiale, les objectifs de ces programmes étant généralement trop ambitieux et peu réalistes,

- des coûts élevés d'investissements et un manque de technologies appropriées peu coûteuses qui marqueraient un progrès dans le sens de l'hygiène, tout en rendant les coûts d'investissements et d'entretien abordables aux bénéficiaires,
- l'insuffisance de coordination des activités des différentes institutions gouvernementales, des ONG et des bailleurs de fonds et de définition d'une politique et de stratégies cohérentes et réalistes.

Pour tenter de remédier à cette situation, le Schéma Directeur propose, notamment en milieu rural (villages et centres ruraux):

- de consacrer l'un des projets nationaux (Fiche de projet A4) à l'étude et à la promotion de l'assainissement en milieux urbain et rural dans le cadre d'un Schéma Directeur sectoriel;
- d'intensifier l'éducation sanitaire (Fiches de projet A2 et A4), dans toutes les localités bénéficiant d'un projet d'alimentation en eau (notamment dans celles où existe un centre de santé); il s'agira de vulgariser progressivement des actions simples relatives à l'hygiène de l'eau provenant des puits traditionnels et aux abords des points d'eau modernes, à l'évacuation des excreta, des déchets solides et des eaux usées, cette vulgarisation pouvant être faite à travers les comités de gestion des points d'eau et des adductions d'eau;
- d'identifier et de vulgariser (information, démonstration, incitation) des ouvrages peu coûteux, faciles à exécuter et entretenir par les habitants eux-mêmes;
- d'inscrire dans tous les programmes d'alimentation en eau présentés au Chapitre 9 un volet réservé à des actions d'éducation sanitaire et à des réalisations privées simples (ou publiques selon les cas);
- de développer, comme pour les autres sous-secteurs, des procédures de renforcement institutionnel et structurel, de formation, de participation des populations, de décentralisation et d'intervention du secteur privé.

En matière d'assainissement au sens large (évacuation des eaux usées et excréta, des eaux pluviales et des ordures ménagères), les objectifs sont difficiles à établir surtout en milieu rural, le milieu urbain étant plus facile à délimiter. Les investissements sont tout aussi difficiles à évaluer, notamment en fonction des options technologiques et des normes qui seront retenues. Si on se fie aux prévisions du Plan actuel (22 milliards de F.CFA) dont moins du tiers a été réalisé, on comprend mieux la difficulté de programmer valablement, sur les dix prochaines années, l'investissement nécessaire.

Au niveau du Schéma Directeur, on s'est donc limité à proposer d'une part des projets nationaux consacrés à l'étude, à la formation et à la promotion de l'assainissement par l'éducation sanitaire, d'autre part un volet "assainissement" relativement important dans tous les programmes d'alimentation en eau potable. L'ensemble représenterait un investissement de près de 19 milliards de F.CFA sur 10 ans dont 10 milliards pour le milieu urbain. Il est à noter que, au niveau des projets spécifiquement consacrés à l'assainissement, urbains pour la plupart, la DNHPA a proposé 16 projets pour un montant global de près de 6 milliards de F.CFA (3e Atelier de la DIEPA - Décembre 1988).

5.6. CONCLUSIONS ET RECOMMANDATIONS GENERALES

5.6.1. Conclusions

L'impact des efforts considérables consentis par le Mali et la communauté internationale dans le domaine de l'alimentation en eau et de l'assainissement durant la décennie de l'eau est mitigé:

- création de nombreux équipements mais taux de couverture des besoins inférieurs aux objectifs de la DIEPA, sous-utilisation et entretien insuffisant des équipements;
- impact certain mais limité (et difficilement mesurable) sur le temps perdu et la santé des populations (accès plus facile à une eau de bonne qualité);
- efforts de sensibilisation insuffisants (en particulier pour l'assainissement), mais prise de conscience grandissante que l'eau et l'hygiène ne sont pas un bien gratuit et que la participation des populations est une condition nécessaire de succès.

5.6.2. Recommandations générales

a) Choix des technologies

Il devra être, plus que par le passé, adapté aux besoins ressentis dans les différents milieux et aux capacités de financement et de gestion des différentes communautés:

- * en milieu rural : les besoins minima en points d'eau modernes pouvant fournir 20 l/j/hab (puits moderne et/ou forage équipé de pompe à motricité humaine) seront déterminés selon les besoins exprimés, la proximité et le débit. L'amélioration des puits traditionnels, les efforts pour la diminution du coût des puits et forages et la limitation du nombre de modèles de pompes adaptées aux caractéristiques des différentes zones sont des critères à considérer en priorité.
- * en milieu intermédiaire : les besoins en eau des centres ruraux et semi-urbains (31 l/j/hab) pourront être couverts à grâce à l'introduction de systèmes sommaires d'adduction d'eau avec pompage motorisé (si possible grâce au développement de l'énergie solaire) et bornes fontaines.
- * en milieu urbain: les besoins en eau potable (de l'ordre de 50 l/j/hab en moyenne) devront être couverts par la réhabilitation et l'extension des réseaux de distribution avec bornes fontaines et branchements particuliers, l'augmentation des capacités des stations de pompage et de traitement, l'introduction (provisoire) de postes autonomes dans les quartiers excentrés.

b) Aspects financiers

Ils devront être rationalisés pour assurer la durabilité des systèmes.

- * en milieu urbain et semi-urbain: l'autonomie financière des organismes gestionnaires devrait être l'objectif, à condition de mettre en place une tarification qui, à la fois, incite à une consommation croissante d'eau potable et permette l'équilibre financier des systèmes. Une étude de ce problème devrait être entreprise rapidement.
- * en milieu rural: il est probable que la plus grande partie de l'investissement de base (1 forage ou 1 puits par tranche de 400 hab) doive être subventionnée, mais on devra obtenir une prise en charge totale du coût de la pompe (tout au moins de son

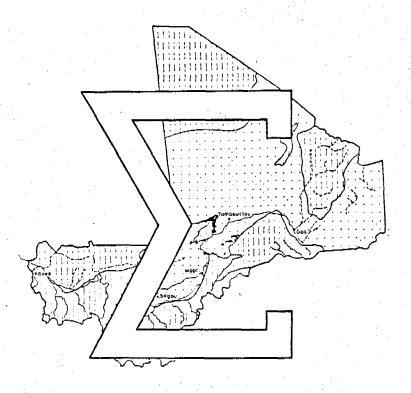
renouvellement) et de son entretien par les communautés rurales (avec des modalités différentes selon les revenus régionaux). Des modes de financement nouveaux (Fonds National de l'Eau, Fonds Locaux de Développement) devront être mis en place pour assurer la prise en charge financière de l'évolution probable des systèmes de base en fonction de besoins nouveaux.

c) Organisation

Le désengagement progressif de l'Etat et la participation croissante des communautés à la satisfaction de leurs besoins en eau devraient se traduire dès le début de la décennie 90 par les actions ci-après :

- * une redéfinition du rôle de la DNHE et des autres administrations publiques concernées par le Secteur notamment de l'EDM et de la DNHPA: elles devront de moins en moins jouer le rôle de fournisseurs de services (construction de forages et entretien des pompes) et avoir, au contraire, un rôle croissant d'appui aux communautés locales (ce qui implique une déconcentration de leurs structures), de planification, de gestion et de suivi (étude des ressources, synthèses régionales), banques de données, recherche de financements, programmation et suivi des travaux,...).
- * un appui au Secteur privé et aux ONG: ils devront prendre en charge les actions de conseil (bureaux d'étude), de construction (entreprises de forages, de puisatiers et de génie civil des réseaux d'adductions d'eau sommaires), d'entretien de pompes et des réseaux de distribution, ce qui implique des mesures administratives (accès aux marchés), financières (accès aux crédits bancaires) et réglementaires (respect des règles de l'art, obligation de déclaration,...). En matière d'hydraulique urbaine, le statut juridique de l'EDM devrait être précisé et se traduire notamment par la séparation effective de la distribution de l'eau de celle de l'électricité [5-9, 5-10].
- * un effort continu de formation et de développement des ressources humaines : il portera en fonction de l'évolution des besoins, sur la formation technique certes, mais aussi sur la formation dans les domaines des sciences humaines et de la santé (pour mieux aider les communautés) et de la gestion (pour les nouvelles entreprises).
- * un appui de l'Administration aux communautés: il devra déboucher, en milieu rural en particulier, sur une participation accrue des populations à la conception, à la réalisation et à la gestion de systèmes d'alimentation en eau et d'assainissement adaptés à leurs besoins et à leur évolution:

d) Assainissement


La priorité insuffisante accordée par les populations et les bailleurs de fonds aux problèmes d'assainissement dans les différents milieux devra faire l'objet d'une étude pour définir et planifier les actions en matière d'hygiène de l'eau, d'éducation sanitaire, de sensibilisation, de technologies adaptées aux besoins et aux revenus, et de promotion de ces techniques.

Pour mener à bien ces différentes actions, le Schéma Directeur propose, aux Chapitres 8 et 9, des stratégies et des programmes d'investissement appuyés par des projets d'accompagnement indispensables pour avoir les meilleures chances d'aboutir. Le Schéma donne la priorité à l'approvisionnement en eau en lui affectant près de 54 % du budget prévisionnel d'ici 2001 (voir Tableau 9.5) avec près de 140 milliards de F.CFA (73 pour l'hydraulique et l'assainissement villageois, 27 pour les adductions d'eau sommaires et l'assainissement des centres ruraux et semi-urbains et 40 pour la distribution d'eau potable et l'assainissement des centres urbains).

CHAPITRE 5

Références bibliographiques hors projet

- [5-1] Rapport du troisième Atelier National de la DIEPA sur la planification du Secteur Eau Potable et Assainissement Bamako, 6 8 Déc. 1988
- [5-2] Diagnostic des 7 Régions du Mali Comités Régionaux de Développement-Ministère du Plan - 1985
- [5-3] Influence des barrages de Sélingué et Markala sur les débits à l'aval DNHE (Division Hydrologie) Avril 1988
- [5-4] Programme Régional Solaire FED/CILSS 1987
- [5-5] Rural water supply and sanitation Time for a change Discussion paper 18 World Bank 1984
- [5-6] L'hydraulique villageoise dans les pays membres du CILSS: situation au Mali-BURGEAP - Décembre 1982
- [5-7] Rural sanitation in Lesotho form pilot project in national program-UNDP/World Bank - Discussion paper N° 3 - 1990
- [5-8] Rural Water supply and sanitation in Sub-saharian Africa: a strategy brief-WORLD BANK Document provisoire et confidentiel Mai 1989
- [5-9] Schéma directeur d'aménagement et d'urbanisme DNUC Ministère des Travaux Publics - 1981
- [5-10] Plan directeur d'AEP de Bamako SAFEGE 1980
- [5-11] Plan directeur d'assainissement de Bamako BALFOUR 1974
- [5-12] Etude préliminaire sur l'évacuation des eaux usées SAFEGE 1980

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 6

HYDRAULIQUE PASTORALE

TABLE DES MATIERES

TEXTE '

6.1.		ON ACTUELLE DE L'ELEVAGE ET DE L'HYDRAULIQUE PASTORALE	1
	6.1.1.	Cheptel	1
	6.1.2.	Organisation pastorale	3
	6.1.3.	Points d'eau pastoraux	4
6.2.	BESOINS	EN EAU	5
	6.2.1.	Normes	5
	6.2.2.	Besoins en 1989	6
	6.2.3.	Besoins à l'horizon 1996	7
	6.2.4.	Besoins à l'horizon 2001	10
4	6.2.5.	Besoins maxima théoriques	11
6.3.	ADEQUATI	ON DES RESSOURCES ET DES BESOINS	11
		Besoins couverts par les projets du Plan 1987-91	
		Besoins couverts par les projets prévus à court terme	
		Besoins à couvrir par de nouveaux projets à programmer	
6.4.		TES ET LIMITATIONS	15
		Contraintes et limitations liées aux ressources	
		et aux types de point d'eau	
		Contraintes et limitations liées à l'organisation pastorale	15
		Contraintes et limitations juridiques	
		Contraintes et limitations liées aux moyens d'exhaure	
	6.4.5.	Contraintes et limitations liées aux coûts de l'eau	17
6.5.	CONCLUSI	ONS ET RECOMMANDATIONS	17
		Conclusions	
."		Recommandations	
BIBL	I OGRAPH I E	·	27
ra Rit.	EAUX		
6.1.	Effectif	s de bétail par Région (estimation 1987)	1
6.2.	Besoins	en eau en saison chaude et sèche pour le bétail en 1989	6
6.3.	Besoins	en eau en saison chaude et sèche pour le bétail en 1996	7
6.4.	Besoins	en eau en saison chaude et sèche pour le bétail en 2001	10
6.5.	Besoins	couverts par les projets du Plan 1987-1991	12
6.6.	Besoins	couverts par les projets prévus à court terme	14
g 7	Contrain	tes et limitations liées aux ressources	
0./.		ypes de point d'eau	16

6.8. Réalisations recommandées jusqu'à l'horizon 2001 23 et	24
6.9. Apport prévu des réalisations recommandées jusqu'à l'horizon 2001	25
6.10. Récapitulation des besoins maxima en eau et de l'apport des projets en cours, programmés, identifiés et à identifier	26
FIGURES	
6.1. Répartition du bétail (effectifs 1989)	2
6.2. Besoins en eau du bétail en 1989	9
6.3. Potentiel de charge en bétail	13
6.4. Charge en bétail (1989)	20
6.5. Taux d'occupation des pâturages	22

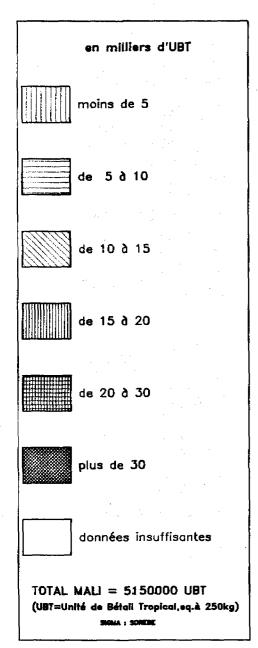
HYDRAULIQUE PASTORALE

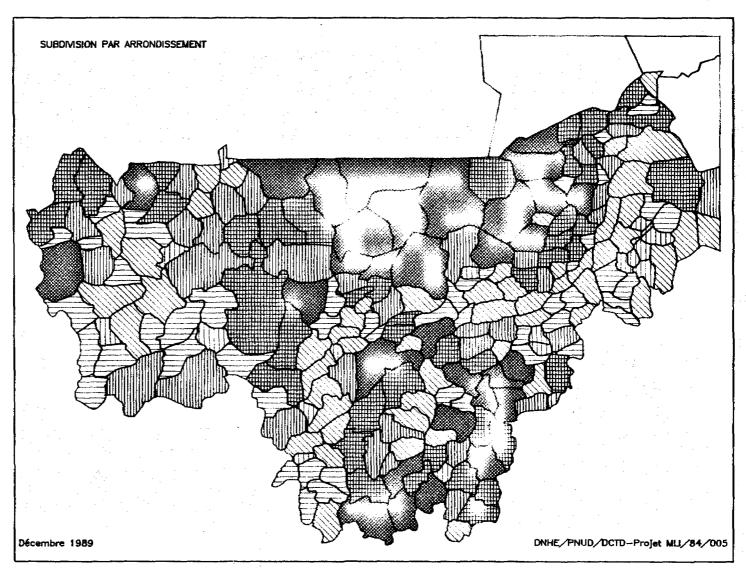
6.1. SITUATION ACTUELLE DE L'ELEVAGE ET DE L'HYDRAULIQUE PASTORALE

6.1.1. Cheptel

Les effectifs d'animaux d'élevage présentés ici sont tirés du rapport annuel de la Direction Nationale de l'Elevage (DNE).

Tableau 6.1 (*) - Effectifs de bétail par Région (estimation 1987) (en milliers de têtes)


REGION ADMINISTRATIVE	BOVINS	OVINS CAPRINS	EQUINS	ASINS	PORCINS	CAMELINS
Kayes	735	1.062	7,4	17,5	0,5	-
Koulikoro	705	1.796	15,8	46,5	3,0	13,2
Sikasso	1.228	481	1,1	33,5	<u> </u>	
Ségou	554	1,154	11,3	36,2	47,0	0,1
Mopti	1.014	2.788	16,0	149,7	-	2,8
Tombouctou	244	1.231	1,2	93,5	-	96,0
Gao	79	1.857	0,5	44,5	_	74,6
District de Bamako	30	60	0,8	1,0	5,0	_
TOTAUX	4.589	10.529	54,1	422,4	55,5	186,7


Ces effectifs sont en augmentation par rapport à ceux des années précédentes bien que le cheptel soit encore en phase de reconstitution après les pertes dûes à la sécheresse de 1983-1984. Basée sur les chiffres de vaccinations, cette répartition spatiale du cheptel correspond essentiellement à la situation en saison sèche, ce qui est d'une importance capitale au plan de l'hydraulique pastorale (Figure 6.1). Les Régions de Mopti et surtout de Sikasso sont actuellement et de loin les plus denses en bétail bovins. On a ainsi observé au cours des dernières années une nette migration des bovins vers les régions agricoles du Sud du pays où sévit cependant le trypanosome bovin. La Région de Mopti contient actuellement le plus grand nombre d'ovins-caprins et d'asins, suivie par les 7e et 6e Régions (Gao et Tombouctou) où sont également concentrés les camelins.

L'embouche bovine, ovine et caprine est pratiquée dans les 4e et 5e Régions (Ségou et Mopti) [SDM/SOC/5].

^(*) Les effectifs du cheptel par Cercle peuvent être consultés dans le rapport [SDM/HPL/1]

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Ch.

ľ

C 4

Figure

6.1.2. Organisation pastorale

Les systèmes d'élevage pratiqués au Mali sont très diversifiés, en raison de la variété des ressources fourragères (liées aux conditions climatiques), des ethnies et des traditions des éleveurs. On peut cependant les regrouper autour de 5 types recoupant, schématiquement, les zones homogènes de la figure 1.4 (Chapitre 1):

a) Système purement pastoral ou d'élevage transhumant

Ce système est pratiqué par les Touaregs, les Peulhs et les Maures. Les Touaregs et les Peulhs exploitent, pendant l'hivernage, les pâturages de l'ensemble du Nord-Est du pays en utilisant les puits et les points d'eau temporaires (mares) pour l'abreuvement des troupeaux. Quand ces points d'eau commencent à s'assècher, ils se rapprochent des points d'eau permanents en bordure du Niger en vue d'exploiter les pâturages de décrue. Le système des Maures est analogue à celui des Touaregs et des Peulhs, mais sur les pâturages mauritaniens en hivernage et au voisinage des affluents du fleuve Sénégal en saison sèche.

b) Système associé aux cultures pluviales (mil et sorgho)

Ce système est pratiqué par des agriculteurs peulhs autosuffisants en céréales et pour lesquels l'élevage constitue l'unique source de revenu monétaire. Pendant la période des cultures (Juin à Décembre), les troupeaux sont confiés à des bergers qui les éloignent des terres cultivées. Ils sont ramenés après la récolte pour consommer les chaumes de céréales pendant environ 1 mois (Décembre-Janvier). Ils repartent ensuite en transhumance vers des pâturages associés à des points d'eau permanents.

c) Système associé aux cultures de décrue

Ce système est en général pratiqué par des riziculteurs peulhs (parfois des pêcheurs). Il est orienté vers la production laitière et ne donne lieu qu'à des mouvements localisés et peu importants de transhumance (abreuvement à partir des fleuves). Il est pratiqué dans les zones inondées du delta intérieur du Niger et au voisinage des affluents du Sénégal.

d) Système agro-pastoral à dominante agricole

C'est le système pratiqué dans le Sud du pays. Les animaux peuvent être totalement sédentaires ; mais on pratique dans certains cas une transhumance d'hivernage destinée à éviter la détérioration des cultures et les conflits entre cultivateurs et propriétaires de bétail. Elle a pour conséquence une meilleure utilisation des ressources fourragères.

e) Système associé à la riziculture en submersion contrôlée

Ce système est pratiqué essentiellement dans la zone de l'Office du Niger. Les animaux restent sur les rizières jusqu'à leur mise en eau. Pendant la période des cultures, ils sont confiés à des bergers qui les font pâturer sur les zones périphériques du domaine d'action de l'Office, non inondées et non cultivées.

D'une manière générale, l'organisation pastorale actuelle montre que :

- la transhumance des bovins est pratiquée dans l'ensemble du pays sauf dans le Sud tandis que les ovins et caprins se déplacent relativement peu;

- il existe des organisations d'éleveurs (coopératives, associations), mais elles ne sont véritablement actives que dans le cadre de projets en exécution;
- globalement, les points d'eau en zone pastorale ne sont pas gérés par de tels groupements, aussi leur entretien n'est-il pas assuré;
- les éleveurs n'entretiennent les points d'eau qu'ils utilisent que si les pâturages desservis par ces points d'eau leur appartiennent en propre. Comme le régime foncier des pâturages n'est pas codifié, on comprend le rôle important de l'appropriation traditionnelle des pâturages.

6.1.3. Points d'eau pastoraux

a) Types de points d'eau

Parmi les points d'eau pastoraux qui exploitent les eaux souterraines, les plus simples et les moins coûteux sont les puisards creusés à la main par les éleveurs et exploitant les nappes superficielles de faible profondeur. La faiblesse des débits est compensée par leur grand nombre. On rencontre également de nombreux puits traditionnels plus profonds creusés à la main sans busage; ils présentent des risques permanents d'éboulement et s'assèchent souvent en saison chaude. Les points d'eau modernes (forages et puits cuvelés) consacrés exclusivement à l'élevage sont encore peu nombreux : environ 1 millier de puits et quelques centaines de forages équipés de groupes moto-pompes (secteurs PRODESO et ODEM*).

Les puits modernes peuvent être soit directs, soit couplés avec des forages (contrepuits) dans le cas de nappes profondes (zones désertiques). Généralement de grand diamètre (1,80 m), ils peuvent permettre plusieurs puisages simultanés lorsque leur débit le permet. Ils sont exploités par les moyens d'exhaure traditionnels et ont de ce fait la faveur des éleveurs. Toutefois, le contre-puits est un ouvrage onéreux au-delà d'une certaine profondeur; sont coût (10 à 20 millions F.CFA) équivaut à 2 ou 4 fois celui du forage et sa construction nécessite 1 à 3 mois de travail (contre 1 à 3 jours pour le forage).

En dehors de ces points d'eau pastoraux "construits" qu'on rencontre surtout en zone sahélienne et désertique, le bétail s'alimente également, surtout dans le Sud, aux points d'eau de surface: mares, lacs et rivières. Cependant, depuis le début des années 70, le déficit pluviométrique a provoqué une forte diminution du remplissage des mares et lacs naturels et donc leur tarissement bien avant la fin de la saison sèche. De même, certaines rivières pérennes, notamment certains affluents du Sénégal et du Niger, ne coulent plus dès le début de la saison sèche.

La disparition prématurée de ces points traditionnels d'abreuvement du bétail, aggravée par l'abaissement des nappes et le tarissement des puits (traditionnels surtout) et des puisards, est l'un des facteurs principaux de déplacement du cheptel vers le delta intérieur et le Sud du pays.

Le surcreusement de mares ou la création de mares artificielles et la construction de points d'eau permanents (puits modernes et forages) restent encore trop rares pour permettre une exploitation rationnelle de l'important potentiel fourrager du pays (voir Figure 6.3, page 13 à comparer avec la Figure 6.4, page 20).

^(*) PRODESO: Projet de Développement de l'Elevage dans le Sahel Occidental.

ODEM: Opération de Développement de l'Elevage dans la Région de Mopti.

b) Répartition des points d'eau

La répartition des points d'eau n'a pas toujours été conforme à la logique et aux besoins de l'élevage par suite d'un défaut de concertation entre les différents services gouvernementaux concernés d'une part et les éleveurs d'autre part [6-3], mais aussi d'une connaissance insuffisante des pâturages et de leur répartition.

En fonction des nombreux projets de développement de l'élevage qui se sont succédés depuis 1973-1974, certaines régions sont bien pourvues en points d'eau pastoraux (Kayes, région centrale, Pays Dogon) alors qu'ils sont en nombre insuffisant dans des zones ayant un potentiel fourrager et des ressources en eaux souterraines ou de surface suffisantes (ouest du delta intérieur du Niger, est du pays, nord de Niono, certaines zones de la 3e Région).

c) Gestion des points d'eau

La DNE qui est chargée du suivi des pâturages et des points d'eau, a opté pour une politique qui vise à dégager l'Administration de la gestion des points d'eau pastoraux (fonctionnement, entretien, renouvellement des équipements, etc...) et de la confier aux associations et groupements pastoraux qui seront progressivement mis en place et deviendront propriétaires des points d'eau, ceci afin de les responsabiliser quant à l'utilisation et à la maintenance des ouvrages.

Actuellement, les usagers regroupés au sein d'associations pastorales participentau financement des nouveaux points d'eau à raison, en moyenne, de 200.000 F.CFA par forage villageois ou pastoral (Projet Mali Aqua Viva, Gao et Tombouctou), mais jusqu'à 2 millions de F.CFA par contre-puits ou forage (ODEM). En outre, les usagers paient pour le fonctionnement des pompes à moteur équipant certains forages. Dans ce même type de gestion, le PRODESO a organisé depuis 5 ans, dans les zones de Nara-Est et Kayes, deux périmètres pastoraux avec 3 forages équipés de pompes gérées par des associations d'éleveurs. Ceux-ci paient au trésorier de leur association une "cotisation" pour l'abreuvement du bétail fixé à 1.000 F.CFA/UBT et par campagne (ou par an). Il existe en outre une petite caisse pour les dépenses courantes (carburant, huile, etc...) alimentée par un compte bancaire où sont déposées les cotisations. Enfin, un cahier des charges réglemente l'utilisation des pâturages et des points d'eau.

Ailleurs, les redevances pour l'utilisation des points d'eau villageois par les transhumants ne sont pas uniformes : elles varient de 25 à 50 F.CFA/bovin et quelquefois l'eau est gratuite. Il existe également en ce qui concerne les transhumants, des "contrats de fumure" avec les paysans sédentaires. Dans ce cas, les transhumants ont droit au pâturage et à l'eau en échange de la fumure épandue sur les champs des "propriétaires". Ces contrats de fumure seraient très fréquents dans le Sud du pays (Région de Sikasso).

6.2. BESOINS EN EAU

6.2.1 Normes

Les besoins en eau du bétail sont évalués ici d'après les normes suivantes :

a) Une UBT (unité de bétail tropical, soit 250 kg de poids vif) requiert 30 l d'eau par jour en saison chaude et sèche (donc consommation maximum) et de 20 l environ seulement en moyenne pendant le reste de l'année. Dans les calculs, la norme maximum de 301/j/UBT a été retenue.

b) Les équivalences en UBT par espèce sont les suivantes :

- Bovin	0,7	UBT	[6-1]
- Ovin ou caprin	0,1	11	[6-1]
- Asin	0,4	41	(estimation)
- Equin	0,7	11	11
- Camelin	1,6	tt	17
- Porcin	0,2	**	Ħ

Les normes en matière de superficie à desservir par un point d'eau, de distance entre points d'eau et de quantité d'UBT par point d'eau sont fonction de la qualité et de la densité des pâturages autour du point d'eau considéré et du volume disponible journalièrement sur ce point d'eau. En moyenne, on considère que les troupeaux doivent pouvoir s'abreuver à un point d'eau à une distance maximale de 12 km correspondant au parcours que peut effectuer un bovin dans une journée. La superficie maximum desservie par un point d'eau doit donc être de 110 km² et les points d'eau distants de 12 km au maximum. Le nombre d'UBT pouvant exploiter cette superficie est de 700 à 1.000 et le point d'eau doit pouvoir donc fournir un débit de 20 à 30 m³/jour [SDM/HPL/1]. Ce nombre d'UBT représente une charge en bétail de 0,06 à 0,09 UBT/ha, soit beaucoup moins que la charge potentielle suivant les zones (voir Figure 6.3).

6.2.2. Besoins en 1989

Les besoins en eau actuels (1989) du cheptel sont évalués ici par projection linéaire jusqu'en 1989 des tendances d'évolution du bétail observées au cours de la période 1970-1987.

Tableau 6.2. - Besoins en eau en saison chaude et sèche pour le bétail en 1989

ESPECE	EFFECTIF 1989 (milliers)	UBT (milliers)	BESOINS MAXIMA (arrondis) (m³/jour)
Bovins Ovins et caprins	5.023 11.207	3.516 1.121	105.400 33.600
Sous-total		4.637	139.000
Asins Equins Camelins Porcins	552 55 239 60	221 39 382 12	6.600 1.200 11.500 400
Sous-total		654	19.700
TOTAL CHEPTEL 1989		5.291	158.700 arrondis à 159.000

On estime actuellement que l'eau d'abreuvement provient pour 2/3 environ des eaux souterraines et pour 1/3 des eaux de surface.

Les besoins en eau par Arrondissement sont montrés par la figure 6.2. Ils sont calculés selon la répartition du bétail par Arrondissement indiquée dans le recensement de 1987 et majorée selon les taux d'accroissement 1970-1987 supposés constants jusqu'en 1989.

6.2.3. Besoins à l'horizon 1996 (fin du prochain Plan Quinquennal 1991-1996)

Il est très difficile, dans le contexte actuel de l'élevage au Mali, de faire des projections d'effectifs de bétail à moyen et long termes. Les estimations actuelles d'effectifs sont d'ailleurs elles-mêmes incertaines.

Une projection des tendances d'évolution des effectifs de bétail mesurés depuis 1970 peut cependant donner une indication au niveau national. Une telle projection établie sur la base de régressions linéaires, par espèces, sur la période 1970-1987 [6-2] et prolongée jusqu'en 1996 conduit aux chiffres du tableau 6.3 ci-après.

On peut y observer une forte tendance à la décroissance des effectifs d'équins [6-5], car les chevaux sont de moins en moins utilisés pour les travaux ruraux et ne sont plus guère considérés comme des signes de prestige.

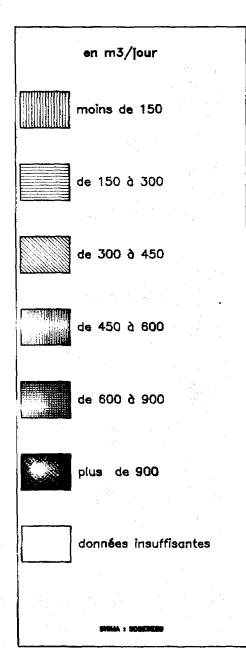
Tableau 6.3. - Besoins en eau en saison chaude et sèche pour le bétail en 1996

ESPECE	EFFECTIF 1996 (milliers)	UBT (milliers)	BESOINS MAXIMA (arrondis) (m³/jour)
Bovins Ovins et caprins	5.121 12.227	3.585 1.223	107.600 36.700
Sous-total		4.808	144.300
Asins Equins Camelins Porcins	604 23 259 72	242 16 414 14	7.300 500 12.400 400
Sous-total		686	20.600
TOTAL CHEPTEL 1989		5.494	164.900

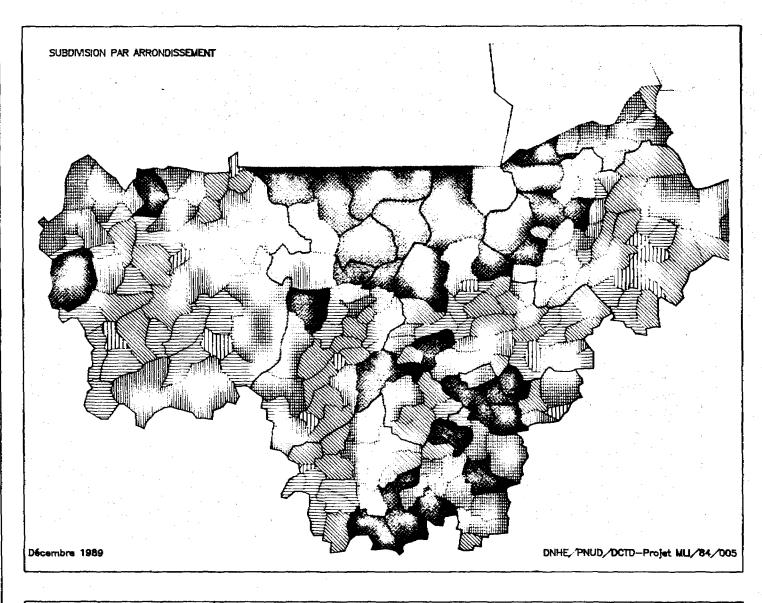
Les besoins en 1996 seront ainsi d'environ 165.000 m³/jour, soit 6.000 m³/jour de plus qu'en 1989.

En fait ces besoins supplémentaires ne représentent que ceux dûs à la poursuite de la tendance d'accroissement des troupeaux. Dans les zones où la disponibilité des points d'eau constitue le facteur limitant, le Schéma Directeur devra viser la satisfaction de besoins supérieurs à ceux qui sont ainsi estimés afin de rendre possible des taux de croissance du bétail supérieurs aux taux tendanciels, notamment pour les bovins, les ovins et les caprins.

On posera ainsi les hypothèses suivantes :


- les effectifs de bovins, ovins et caprins, et par conséquent les besoins en eau correspondants, croîtront comme la consommation intérieure de viande. C'est dire que ce même taux de croissance vaudra aussi pour l'exportation de bétail et de viande;
- le revenu moyen disponible par habitant croitra de 0,2 % par an bien qu'on estime généralement que la croissance du revenu est actuellement faible, voir nulle ou négative. Les estimations disponibles [SDM/ECO/1] ne permettent pas de conclure nettement sur ce point. L'hypothèse retenue ici se justifie par le fait qu'on peut espérer une certaine amélioration des conditions économiques pour les années à venir;
- l'élasticité-revenu pour la consommation de viande est de 1,3 [6-4];
- l'accroissement démographique moyen de 1989 à 2001 est de 1,7 % par an (selon projections du tableau 3.1).

Sur la base de ces hypothèses, on estime que les effectifs de bovins, ovins et caprins s'accroîtront en moyenne de 2,2 % par an, de même que les besoins en eau correspondants, les effectifs et les besoins en eau des autres espèces étant supposés continuer de croître selon les tendances actuelles.


Les besoins maxima prévisibles pour 1996 sont alors de l'ordre de 182.000 m³/jour soit 23.000 m³/jour de plus qu'en 1989.

La réalisation de telles hypothèses suppose cependant que les conditions de commercialisation (commerce intérieur et commerce extérieur) permettent l'accroissement prévu des effectifs bovins.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Figure

BESOINS EN EAU DU BETAIL EN 1989

Ch.6

6.2.4. Besoins à l'horizon 2001 (fin du Plan Quinquennal 1997-2001)

Sur les mêmes bases que ci-dessus, la projection des besoins à l'horizon 2001, selon les tendances actuelles, est la suivante :

Tableau 6.4. - Besoins en eau en saison chaude et sèche pour le bétail en 2001

ESPECE	EFFECTIF 2001 (milliers)	UBT (milliers)	BESOINS MAXIMA (arrondis) (m³/jour)
Bovins Ovins et caprins	5.190 12.955	3.633 1.296	109.000 38.900
Sous-total		4.929	147.900
Asins Equins (1) Camelins Porcins	641 1 274 80	256 1 438 16	7.700 13.200 500
Sous-total		711	21.400
TOTAL CHEPTEL 2001		5.640	169.300 arrond.170.000

Les besoins en 2001 sont donc d'environ 170.000 m³/jour contre 159.000 en 1989 et 165.000 en 1996, soit une augmentation de 11.000 m³/j par rapport à 1989 et de 5.000 m³/j par rapport à 1996.

Mais, comme on l'a signalé au paragraphe précédent, il est préférable de viser une satisfaction de besoins supérieurs à ceux ainsi estimés afin de ne pas limiter une éventuelle (et probable) croissance du bétail supérieure à la tendance 1970-1987.

Compte tenu de l'hypothèse concernant l'accroissement des effectifs de bovins, les besoins en 2001 seront d'environ 201.000 m³/j, soit 42.000 m³/j de plus qu'en 1989 (Tableau 6.10 en fin de chapitre).

Il s'agit, bien entendu, d'estimations et non de recommandations quant à l'évolution souhaitable du troupeau. La planification du Secteur de l'Elevage dépasse les limites du Schéma Directeur et devra faire l'objet d'études spécifiques à ce secteur.

⁽¹⁾ On a observé ci-dessus (§ 6.2.3) que les effectifs d'équins sont en nette régression.

6.2.5. Besoins maxima théoriques

L'évaluation des besoins maxima en eau pastorale est basée sur l'évaluation des ressources fourragères du Mali établie par l'Institut d'Elevage et de Médecine Vétérinaire Tropicale (IEMVT) et le Centre Technique de Coopération Agricole et Tropical (CTA) [6-3].

Elle conduit à un potentiel de charge en bétail, sur l'ensemble du Mali, de 20.500.000 UBT alors qu'actuellement (voir ci-dessus) le troupeau national équivaut à 5.300.000 UBT (1989), soit 25 % du potentiel théorique de charge, ce qui revient à dire que le Mali dispose d'un potentiel fourrager actuellement très sous-exploité.

La figure 6-3, établie à partir de la carte CTA-IEMVT des potentiels de charge en bétail [6-3], montre fois la charge potentielle en UBT par hectare. Elle a été obtenue en affectant à chaque Arrondissement un potentiel UBT/hectare calculé, si nécessaire, en faisant la moyenne pondérée des potentiels lorsque plusieurs secteurs équipotentiels de valeur différente sur la carte CTA-IEMVT occupait le même Arrondissement. Le volume théorique journalier des besoins en eau correspondant est égal au nombre d'UBT x 30.10-3 m³/j, soit 615.000 m³/j ou 25.000 points d'eau pouvant être exploités à 25 m³/j.

6.3. ADEQUATION DES RESSOURCES ET DES BESOINS

L'un des principaux facteurs limitants est, en la matière, la disponibilité et la répartition en points d'eau, temporaires ou permanents, sur les pâturages de saison sèche et sur les parcours de transhumance. Par contre, pour le bétail sédentaire ou semi-sédentaire, le facteur le plus limitant est, en général, l'état sanitaire du bétail.

L'amélioration de l'état sanitaire peut, en particulier chez les ovins et les caprins, favoriser l'augmentation du nombre d'agneaux ou de chevraux vivants par mère et d'augmenter ainsi le croît des troupeaux et les besoins en eau.

On retiendra l'hypothèse selon laquelle les besoins en eau pour l'abreuvement des troupeaux actuels sont totalement couverts par l'exploitation des ressources en eau existantes. L'accroissement futur des besoins devra donc être couvert à partir de ressources en eau rendues accessibles par les travaux réalisés dans les projets en cours, les projets inscrits dans le court terme et les nouveaux projets à programmer en fonction des besoins en eau restant à satisfaire.

6.3.1. Besoins couverts par les projets du Plan 1987-1991

Les projets en cours sont :

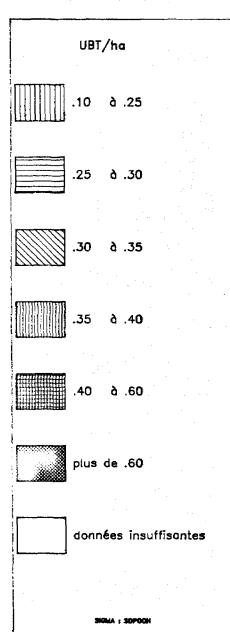
- le PRODESO (Kayes Nord, Nara Est et Dilly),
- le projet d'appui à l'ODEM,
- le programme d'hydraulique villageoise et pastorale du LIPTAKO-GOURMA,
- le 2e programme d'hydraulique villageoise et pastorale de la CEAO,
- le programme de développement intégré du KAARTA (ODIK).

L'estimation globale des réalisations correspondantes, acquises ou en cours, de l'ensemble de ces projets ou programmes (pour la seule hydraulique pastorale) conduit aux chiffres suivants, en terme de ressources en eau additionnelles utilisables induites par ces projets:

Tableau 6.5. - Besoins couverts par les projets du Plan 1987-1991

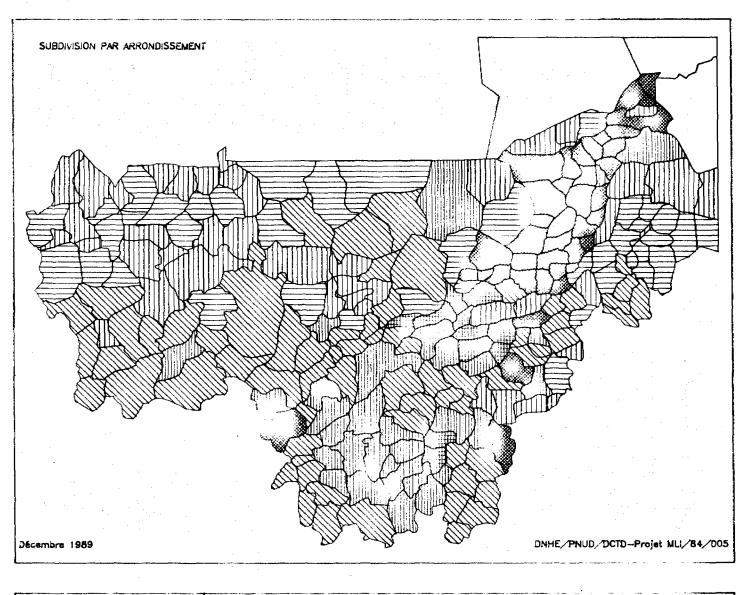
Nature des réalisations	Nombre de points d'eau pastoraux	Quantité d'eau utilisable en saison chaude et sèche		Potentiel de bétail
	pastoraux	par unité (m³/jour)	totale (m³/jour)	corresp. (x 103UBT)
- Forages productifs équipés de pompes manuelles	340	8 (1)	2.720	90
- Forages productifs équipés de pompes solaires	2	40 (2)	80	3
- Puits modernes simples (directs) ou couplés avec des forages (contrepuits) avec moyens d'exhaure traditionnels (dalous)	675	20	13.500	450
- Puits traditionnels actuel lement exploités remis en état	17 (3)	- ,	-	-
- Mares existantes :surcreu- sement	75 (3)		-	. *** -** _** .
TOTAUX	1.017	arrondi à	16.300 16.000	543

⁽¹⁾ $0.8 \text{ m}^3/\text{h}$ pendant 10 h/jour


6.3.2. Besoins couverts par les projets prévus à court terme (après 1991)

Les projets prévus à court terme sont le projet MALI NORD-EST et le projet d'aménagement agro-pastoral de la région de SIKASSO.

^{(2) 5} m³/h pendant 8 h/jour


⁽³⁾ Prolongation de la durée du service, sans augmentation de la disponibilité en eau en période de consommation maximale.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Figure

6.3

POTENTIEL DE CHARGE EN BETAIL

Ch. 6

Selon les mêmes bases que ci-dessus, l'estimation de la disponibilité en eau additionnelle dûe à ces projets est la suivante :

Tableau 6.6. - Besoins couverts par les projets prévus à court terme (après 1991)

Nature des réalisations	Nombre de points d'eau pastoraux	Quantité d'eau utilisable en saison chaude et sèche		Potentiel de bétail
		par unité (m³/jour)	totale (m³/jour)	corresp. (x 103UBT)
- Forages pastoraux	90	8	720	24
- Puits modernes	77	20	1.540	51
- Petits barrages de retenue	80	30 (1)	2.400	80
TOTAUX	247	arrondie à	4.660 5.000	155

(1) Quantité journalière optimale à consommer pour maintenir la retenue en eau pendant toute la saison sèche [SDM/ENP-3].

6.3.3. Besoins à couvrir par de nouveaux projets à programmer

Les nouveaux projets devront apporter 21.000 m³/j pour couvrir la différence entre l'accroissement prévisible des besoins entre 1989 et 2001, soit 42.000 m³/jour, et les apports des projets en cours (16.000 m³/j) et des projets prévus à court terme (5.000 m³/j), soit 21.000 m³/jour.

Les besoins en eau seront donc presqu'entièrement ouverts jusqu'en 1996 par les projets en cours et prévus à court terme (21.000 m³/j fournis contre 23.000 m³/j prévus). Il restera à couvrir le complément nécessaire jusqu'en 2001, soit 21.000 m³/j également, par de nouveaux projets à programmer à partir de 1995-1966.

Avant de proposer ces nouveaux projets à programmer, il convient d'examiner les contraintes à prendre en compte pour la mise en oeuvre de ces projets.

6.4. CONTRAINTES ET LIMITATIONS

6.4.1. Contraintes et limitations liées aux ressources et aux types de points d'eau

Une première contrainte est évidemment dûe à la nature des ressources en eau disponibles: eaux de surface, permanentes ou non, eaux souterraines disponibles à plus ou moins grande profondeur et à plus ou moins grand débit exploitable.

Lorsque les eaux de surface et les eaux souterraines sont simultanément disponibles, les éleveurs donnent évidemment la préférence aux eaux de surface qui permettent un abreuvement plus facile et les dispensent du travail et du temps de puisage (au prix, il est vrai, de risques sanitaires pour le bétail et de conflits avec les agriculteurs en cas de concurrence).

Les types de points d'eau sont liés à la nature des ressources en eau disponibles. Chaque type de point d'eau donne lieu à des contraintes dont les principales figurent au tableau 6.7 ci-après.

Par ailleurs, la répartition géographique des points d'eau permanents constitue actuellement l'une des contraintes majeures car elle conditionne les possibilités de déplacement des troupeaux et peut avoir, en corollaire, un effet désastreux sur l'environnement en cas de concentration excessive sur les pâturages, lorsqu'ils sont suréquipés en points d'eau ou disposent d'un point d'eau à trop fort débit.

6.4.2. Contraintes et limitations liées à l'organisation pastorale

Dans ce domaine, la contrainte principale provient de l'absence d'un Code Pastoral qui réglementerait sans ambiguïté l'utilisation des pâturages et des points d'eau en se fondant sur une organisation adéquate des associations et groupement d'éleveurs et en tenant compte des conditions et des traditions inhérentes et spécifiques à chaque secteur et système d'élevage. Notamment, la prise en charge totale et l'harmonisation de la gestion des points d'eau pastoraux, de leur équipement, de leur fonctionnement et de leur entretien par les éleveurs devraient être un préalable obligé à toute réalisation d'ouvrage hydraulique destiné à l'abreuvement du bétail. Par ailleurs, l'utilisation des points d'eau villageois pour le bétail sédentaire et transhumant sera à étudier et à réglementer, notamment sur le plan des redevances.

6.4.3. Contraintes et limitations juridiques

Outre le statut juridique des organisations pastorales, le Code Pastoral devra définir une politique cohérente de l'hydraulique pastorale qui précisera le statut juridique des ouvrages, les droits et obligations de l'Etat et des éleveurs.

Le Code domanial et foncier devrait, en outre, être complété par des décrets d'application prenant en compte les conditions spécifiques à l'élevage, notamment en définissant et en délimitant l'espace pastoral et son utilisation équilibrée dans le cadre de plans locaux et régionaux d'aménagement du territoire.

Enfin, la loi n° 88-62/AN-RM du 10 Juin 1988 régissant le mouvement coopératif au Mali ne fait aucune mention spécifique aux associations pastorales, lacune qu'il faudrait combler.

Tableau 6.7. - Contraintes et limitations liées aux ressources et aux types de point d'eau

RESSOURCES			
	TYPE DE POINT D'EAU	CONTRAINTES ET LIMITATIONS D'UTILISATION	
Eaux de surface	Mares naturelles	- Situation aléatoire par rapport aux zones de pâturage	
		- Assèchement rapide	
		- Ensablement	
	Mares surcreusées Réservoirs	- Nature des sols et hydrologie	
	Wegel A011 g	- Entretien et protection néces- saires	
		- Possibilité de développement de parasites	
	Petits barrages	- Topographie, nature des sols, hydrologie, technicité	
		- Disponibilité en matériaux de construction	
		- Entretien nécessaire	
		- Possibilité de développement de parasites	
		- Coût	
Eaux souterraines -	Puisards	- Entretien et protection néce	
- à faible profon- deur (moins de 10 m)	Puits traditionnels (éventuellement ali- mentés par des bar- rages souterrains)	saires (nécessité de surcreu ou de curer chaque année)	
grande profondeur	Forages Puits modernes: * puits directs	- Nécessité d'exhaure mécanique pour les forages avec les con- traintes de fonctionnement et d'entretien	
	* contre-puits (avec forage)	- Coût	

6.4.4. Contraintes et limitations liées aux moyens d'exhaure

Les moyens d'exhaure doivent fournir un débit suffisant pour couvrir les besoins d'abreuvement d'une quantité de bétail déterminée selon le potentiel fourrager et sans attente excessive au point d'eau, être maintenus en état permanent de fonctionnement pour un coût accessible aux éleveurs.

Depuis quelques années, les forages profonds destinés à l'hydraulique pastorale ont été équipés de pompes alimentées par batteries solaires ou par groupes électrogènes diésel, en particulier dans le cadre des projets PRODESO et ODEM.

En pratique, de telles réalisations ne sont possibles qu'au sein d'un projet qui suscite et soutient une organisation d'éleveurs et assure l'entretien des installations. Dans la zone du projet PRODESO, on note cependant l'abandon de plusieurs pompes solaires [SDM/SOC/5].

Les contraintes techniques et financières de fonctionnement et d'entretien des pompes à moteur expliquent la préférence générale des éleveurs pour les moyens d'exhaure traditionnels à main ou à traction animale (dalou), mais praticables uniquement sur des puits.

6.4.5. Contraintes et limitations liées aux coûts de l'eau

Les investissements qui correspondent à la création de points d'eau ou à leur amélioration (surcreusement de mares) ne peuvent pas être entièrement supportés par les éleveurs eux-mêmes ou par leurs groupements, mais ceux-ci doivent participer activement à la réalisation des ouvrages.

En revanche, les coûts de fonctionnement (y compris amortissements, au moins dans certains cas, et coûts d'entretien) peuvent être couverts par des cotisations provenant des groupements ou des associations d'éleveurs. Ces cotisations devraient être clairement définies en fonction des conditions propres à chaque zone d'élevage ou type d'élevage.

6.5. CONCLUSIONS ET RECOMMANDATIONS

6.5.1. Conclusions

L'analyse de la situation actuelle permet de dégager les conclusions suivantes qui doivent guider les réalisations à venir :

- Lorsque le choix est possible entre les eaux de surface et les eaux souterraines, c'est à dire surtout près des rivières, dans le delta intérieur du Niger et dans le tiers Sud du pays, la préférence sera donnée aux eaux de surface (moyennant des aménagements d'accès et de salubrité) (Fiches de projet A6 et A7, Chapitre 9).
- Dans les zones sahéliennne et saharienne, hormis les vallées des cours d'eau permanents, le recours aux eaux souterraines sera le plus souvent nécessaire. Dans ce cas, l'expérience des difficultés d'exploitation de système d'exhaure par motopompe conduit à préférer l'exhaure par pompe manuelle ou par puisage à traction animale, cette dernière solution étant la meilleure car elle permet une utilisation plus souple et plus sûre.

- Le type de point d'eau à développer est donc le puits ou le contre-puits, la solution du forage équipé de pompe manuelle ou à moteur devant être réservée soit aux villages (utilisation combinée de l'eau, possibilités d'entretien des pompes,...), soit aux groupements d'éleveurs qui sont demandeurs et financièrement aptes à assurer le fonctionnement et l'entretien. Le choix d'une telle solution répond aux souhaits des éleveurs et à l'orientation des programmes de développement en cours et prévus.
- Au plan technique de la gestion rationnelle des ressources fourragères et de la protection de l'environnement, il est certain que pour exploiter une superficie donnée de pâturages, plusieurs points d'eau de débit moyen, avec exhaure traditionnelle ou animale, sont préférables à un seul forage à gros débit équipé d'une pompe à moteur ou à une grande mare. En effet, la limitation des effectifs d'animaux par point d'eau permet une meilleure exploitation du pâturage et évite sa dégradation (surpâturage). Mais cette recherche de l'équilibre idéal entre l'eau, le pâturage et le bétail n'est pas aisée et elle peut induire des coûts élevés d'investissement.
- La solution des petits barrages de retenue pour l'abreuvement du cheptel ne pose évidemment aucun problème d'exhaure et, de ce fait, elle a la faveur de la majorité des éleveurs. Mais ses inconvénients sont bien connus: forte évaporation (2 m/an en moyenne) limitant fortement son utilisation, coût élevé du m³ d'eau stocké, risques d'infestations parasitaires du bétail. De plus, l'utilisation des retenues d'eau ou des mares pour l'abreuvement des animaux pose des problèmes d'entretien de ces ouvrages: piétinement des abords et dégradation des berges. Toutefois les programmes de petites retenues d'eau s'avèreront nécessaires dans les zones où l'exploitation des eaux souterraines est difficile [SDM/HPL/1].

6.5.2. Recommandations

a) Politique et stratégie générales

Il s'agira d'élaborer une politique de l'élevage qui prenne en compte la cohérence nécessaire entre les ressources en eau et fourragères disponibles et la charge en bétail correspondante. Une harmonisation des politiques et stratégies de l'hydraulique villageoise et pastorale sera également nécessaire.

b) Enquêtes pastorales et gestion des points d'eau

En préalable à la création de nouveaux points d'eau, il sera absolument nécessaire de mener des enquêtes approfondies pour étudier et trouver des solutions aux contraintes évoquées au § 6.4. Ces enquêtes préliminaires sont indispensables avant les études et devront aborder toutes les contraintes en jeu: techniques, économiques, juridiques, foncières, sociales. A cet effet, le Schéma Directeur propose la Fiche de projet A6 (Chapitre 9) d'appui à l'hydraulique pastorale.

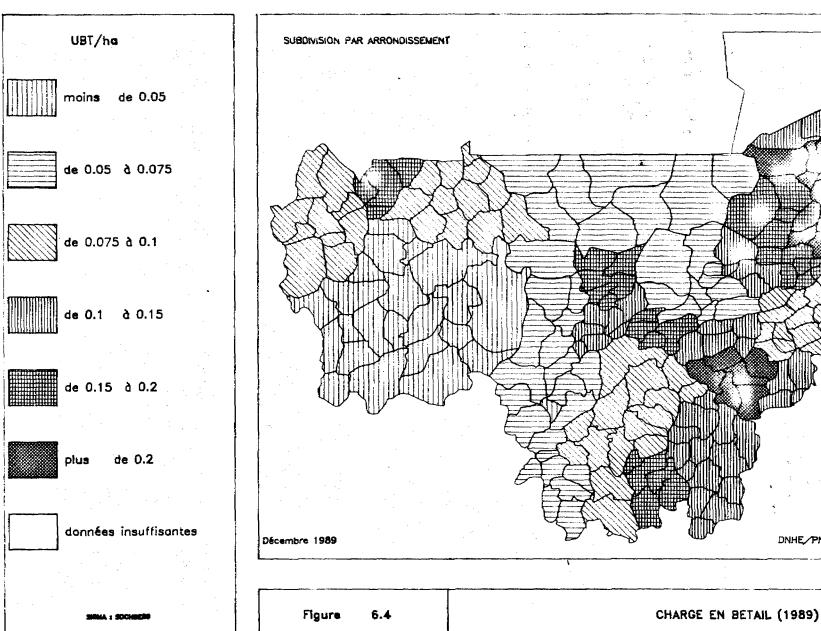
En ce qui concerne plus particulièrement les aspects zootechniques, les enquêtes devront donner une approche de la densité animale (nombre d'UBT par km²) et de la valeur fourragère des pâturages. Ces données sont en effet nécessaires pour établir le maillage des points d'eau. En tenant compte de ceux qui existent, elles aideront donc à la détermination du nombre, de la localisation et du type des points d'eau à créer.

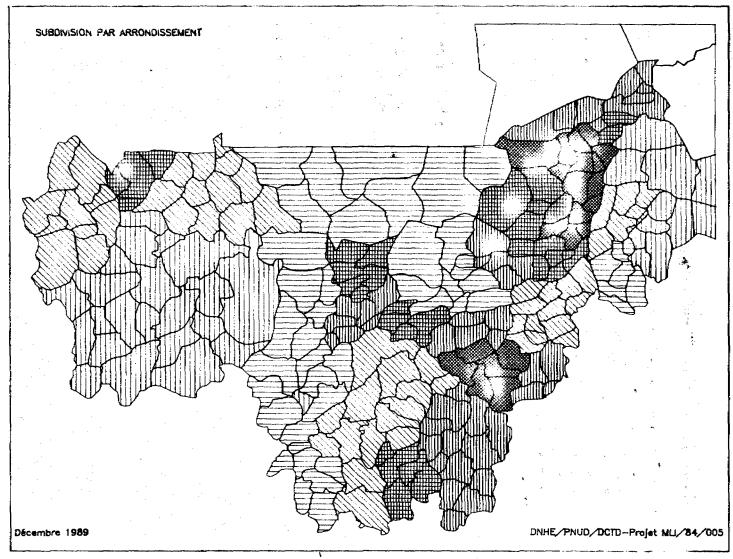
Cette détermination s'effectuera en concertation avec les éleveurs exploitant les pâturages concernés de manière à ce qu'elle réponde à leurs besoins réels. Les éleveurs devrontau préalable être regroupés en associations pastorales comprenant un président, un secrétaire et un trésorier. Chaque association pastorale, future utilisatrice d'un point d'eau, devra participer financièrement à l'investissement correspondant et s'engager, par un cahier des charges, à assurer la gestion et l'entretien, selon les normes, du point d'eau qui sera leur propriété ainsi que des pâturages composant leur terroir. Il est entendu que, dans le cas de forages équipés de pompes, ils paieront une cotisation annuelle pour le fonctionnement et l'entretien des équipements.

En ce qui concerne l'exploitation des pâturages en saison sèche et pour éviter le surpâturage autour des points d'eau, les Services de l'Elevage et les projets de développement devraient inciter les éleveurs à modifier leur système d'exploitation des pâturages. En effet, au lieu d'être centrifuge à partir du point d'eau, elle devrait, en toute logique, être centripète en commençant par les zones périphériques du terroir de manière à ce que les distances journalières à parcourir pour atteindre les abreuvoirs se raccourcissent au fur et à mesure que s'avance la saison sèche.

Les éleveurs devront bien entendu recevoir la formation nécessaire et bénéficier d'un encadrement sur le terrain ainsi que les responsables des associations et groupements qui devront être garants de l'utilisation rationnelle des pâturages qu'ils contrôlent [SMD/HPL/1].

Au plan socio-économique, les questions suivantes devraient notamment être abordées [SDM/SOC/5]:


- parts respectives de l'alimentation humaine et de l'abreuvement du bétail dans l'utilisation de l'eau,
- étude des points d'eau et des moyens d'exhaure traditionnels,
- aptitude des agro-pasteurs à gérer l'eau et les équipements d'exhaure,
- étude des marchés à bétail et du marché de la viande (notamment sur la consommation interne et sur l'exportation).


L'enquête devra porter à la fois sur des sites de fixation ancienne ou récente d'éleveurs et d'agro-pasteurs, sur des sites de transhumance de saison sèche où les éleveurs stationnent régulièrement chaque année, sur des sites de parcours de transhumance entre les sites des deux types précédents.

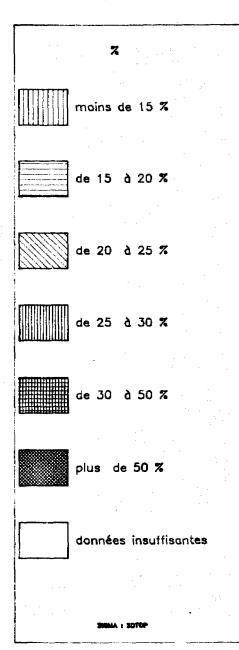
Elle devra mettre en oeuvre deux approches au moins : approche villageoise classique pour les sites permanents et approches spécifiques pour les sites de stationnement des transhumants en saison sèche [SDM/SOC/5].

Sur la base de l'expérience acquise lors de réalisations analogues, le coût total des enquêtes (non limitées aux aspects ci-dessus) a été estimé à 100 millions de F.CFA (Fiche de projet A6, Chapitre 9).

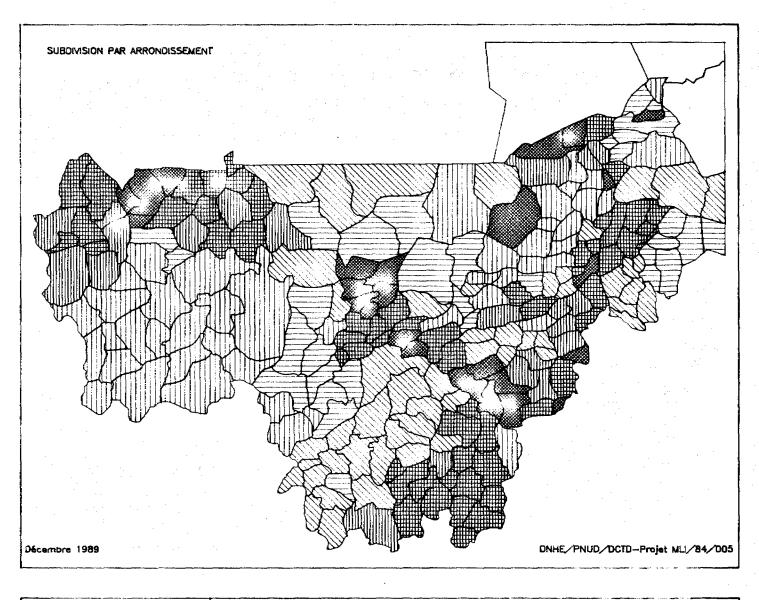
SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

c) Propositions de programmes d'hydraulique pastorale

La figure 6.4 représente la charge actuelle en bétail (en UBT/ha) des pâturages. La comparaison entre cette figure et la figure 6.3 (potentiel de charge en bétail) a permis d'établir la figure 6.5 qui montre le taux d'occupation actuel des pâturages et met en évidence notamment les potentialités inexploitées existant au nord-ouest de Sikasso, au sud de Kayes, dans le nord des Régions de Koulikoro et de Ségou, dans le sud et le sud-ouest de la Région de Tombouctou. Dans le Cercle de Kidal, les données permettant d'apprécier le taux d'occupation des pâturages sont aussi précises mais on sait qu'il y existe un potentiel sous-exploité en raison de l'insuffisance du nombre de points d'eau.


On observe aussi que des potentialités inexploitées subsistent même dans des régions à forte densité animale (Sikasso et Mopti).

La réalisation des ouvrages supplémentaires à prévoir d'ici l'horizon 2001 devra répondre ainsi à deux critères essentiels :


- assurer une meilleure exploitation des pâturages sahéliens, sous-utilisés par manque de points d'eau, en vue d'y réhabiliter l'élevage, bovin notamment, et de freiner le transfert du bétail vers le sud,
- compléter le réseau de points d'eau dans les zones à forte densité animale (3e Région, Sikasso et 5e Région, Mopti).

Selon ces critères, les réalisations recommandées ont été détaillées dans les rapports [SDM/HPL/1] et [SDM/ENP/4] et sont récapitulés dans le tableau ci-après.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Figure

TAUX D'OCCUPATION DES PÂTURAGES

Cn. o

Tableau 6.8. - Réalisations recommandées jusqu'à l'horizon 2001

PROGRAMMES ET PROJETS	LOCALISATION	NATURE DES OUVRAGES	COUT (millions de F.CFA)
- Programme de mise en valeur de pâturages sahéliens et saha- riens :			
Projet de renfor- cement de l'hy- draulique pasto- rale dans le nord des régions de KOULIKORO et de SEGOU	Zone d'élevage au potentiel sous- exploité, entre 5,5 et 8,5° longitude Ouest; 14,5 et 15,5° de latitude Nord	- Equipement de 15 forages existants par des moto-pompes - Création de 100 puits à exhaure animale ou forages avec pompes à motri-	150
		cité humaine - Surcreusement de 10 mares	1.500 80
. Projet de barrages souterrains dans la zone de KIDAL	Zones dépressionnai- res et en particulier lits des cours d'eau temporaires	- 50 barrages souter- rains permettant le creusement de pui- sards (après expéri- mentation)	400
		- 20 mares artifi- cielles de 200 m ³ utiles chacune - 50 impluviums ou	320
		compluviums (200 m ³ utiles chacun)	150
. Projet d'hydrau- lique pastorale dans le Sud et le Sud-Ouest de la 6e Région (TOMBOUCTOU)	Nord de GOUNDAM et SUD-AZAOUAD	 50 puits-citernes 40 mares artifi- cielles de 1000 m³ utiles chacune 	1.000 320
sahar	se en valeur des pâtur iens d de F.CFA (US \$ 13 mi	_	3.920

Tableau 6.8. (suite)

PROGRAMMES ET PROJETS	LOCALISATION	NATURE DES OUVRAGES	COUT (millions DE F.CFA)
- Programme de créa- tion de points d'eau complémentaires dans les régions à forte densité animale			
. Projet de réalisa- tion de barrages de retenue complé- mentaires en 3e Région (SIKASSO)	Cercle de KOUTIALA, SIKASSO, BOUGOUNI, KOLONDIEBA, en raison de leur niveau de densité animale	- 200 petits barrages (après étude d'im- pact des barrages du projet d'aména- gement agro-pasto- ral de la Région de SIKASSO)	3.000
	Zone de réhabilita- tion de la RN7	- Création de 60 mares artificielles de 1000 m³ utiles chacune	180
Projet de réalisa- tion de points d'eau complémen- taires en 5e Région (MOPTI)	Bordure Ouest et SO du Delta intérieur. Zone d'attente des troupeaux transhu- mants, à l'Ouest de TENENKOU	- 50 puits-forages - Surcreusement de 30 mares	1.000 240
	r régions à forte dens lliards de F.CFA (US \$		4.420
TOTAL GENERAL : 8,8	milliards de F.CFA (U	US \$ 28 millions)	8.340

La réalisation de ces programmes fournira les ressources en eau complémentaires suivantes en saison chaude et sèche :

Tableau 6.9. - Apport prévu des réalisations recommandées jusqu'à l'horizon 2001

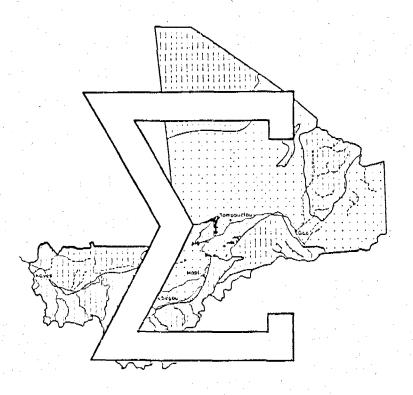
Dialization	Débit en	m ³ /jour	Potentiel	
Réalisations -	Unitaire	Total	en bétail corresp. (103UBT)	
- 200 puits ou forages à exhaure animale	20	4.000	135	
- 15 forages équipés de moto-pompes	120 (1)	1.800	60	
- Surcreusement de 40 mares	<u>.</u>	P.M.	-	
- Création de 20 mares de 200 m³ utiles chacune	6	120	40	
- Création de 100 mares de 1000 m³ utiles chacune	3	300	10	
- 200 petits barrages	30	6.000	200	
- 50 barrages souterrains	10	500	17	
- 50 impluviums ou compluviums	0,5	25	. 1	
TOTAL (m³/jour)		12.745 13.000	463	

⁽¹⁾ Capacité de charge : 3000 à 5000 bovins [SDM/HPL-1 - p. 19]

Le tableau 6-10 ci-après récapitule les besoins additionnels aux horizons 1996 et 2001 comparativement aux apports prévus des projet en cours ou programmés et des projets proposés ci-dessus. Il fait apparaître la nécessité d'un apport complémentaire de 8.000 m³/j entre 1996 et 2001 qui devra être fourni par des projets qu'il faudra identifier d'ici là.

Tableau 6.10. - Récapitulation des besoins maxima en eau pour le bétail et de l'apport des projets en cours, programmés et à identifier (m³/jour)

	1989	1996	2001
- Besoins maxima estimés	159.000	182.000	201.000
- Besoins maxima additionnels . de 1989 à 1996 . de 1996 à 2001		23.000	19.000
- Apport des projets en cours ou program- més jusqu'en 1996	-	21.000	_
- Apport prévu de nouveaux projets iden- tifiés (13000 m³/j)	-	2.000	11.000
- Apport de nouveaux projets restant à identifier, notamment dans le sud de la Région de Kayes	• • • • • • • • • • • • • • • • • • •		8.000


Compte tenu d'un coût moyen de 640.000 F.CFA par m³/j d'eau mis à disposition du bétail, un investissement supplémentaire de 5 milliards de F.CFA devra être recherché, en plus des 8,5 milliards de projets identifiés.

Au Chapitre 9, on a donc inscrit deux programmes régionaux (Fiches B17 et B18) pour un montant total de 13,5 milliards de F.CFA qui permettront d'ici 2001 de couvrir la totalité des besoins prévisionnels en eau du cheptel selon les normes adoptées.

CHAPITRE 6

Références bibliographiques hors projet

- [6-1] FAO-Hydraulique pastorale (sur la base d'un document préparé par P.PALLAS) Rome 1986.
- [6-2] Office Statistique des Communautés Européennes Statistiques de base : Agriculture - Elevage - 1989.
- [6-3] CTA (Centre Technique de Coopération Agricole et Rurale) IEMVT (Institut d'Elevage et de Médecine Vétérinaire des pays tropicaux) Elevage et potentialités pastorales sahéliennes Synthèses cartographiques: Mali-1986.
- [6-4] Elasticité revenu pour les pays d'Afrique d'expression française (source: FAO) Paris : Mémento de l'agronome Ministère Français de la Coopération-1980.
- [6-5] Ministère de l'environnement et de l'élevage Etude du cheptel bovin malien-Juin 1989.

SCHEMA DIRECTEUR
DE MISE EN VALEUR DES RESSOURCES EN EAU
DU MALI

CHAPITRE 7

HYDRAULIQUE AGRICOLE ET AUTRES UTILISATIONS

TABLE DES MATIERES

TEXTE

7.1.	SITUATI	ON ACTUELLE	1
	7.1.1.	Place de l'irrigation dans la production agricole	1
	7.1.2.	Irrigation à partir des ressources en eau de surface pérenne	2
	7.1.3.	Irrigation à partir des ressources en eau de surface non	
		pérenne	4
	7.1.4.	Irrigation à partir des ressources en eau souterraine	5
	7.1.5.	Récapitulation	7
	7.1.6.	Conservation des Eaux et des Sols	7
7.2.	PETITS	PERIMETRES IRRIGUES VILLAGEOIS (PPIV)	8
7.3.	BESOINS	S EN EAU	9
	7.3.1.	Normes	9
	7.3.2.	Estimation des besoins en eau d'irrigation	13
7.4.	CONTRAI	NTES ET LIMITATIONS	14
	7.4.1.	Contraintes et limitations liées aux ressources	
		et à leur exploitation	14
	7.4.2.	Contraintes et limitations liées au contexte socio-économique	
	7.4.3.	Contraintes et limitations de type institutionnel et struc-	
		turel	17
	7.4.4.	Contraintes et limitations liées au marché	17
	7.4.5.	Contraintes et limitations liées au coût de l'eau	
		et à la rentabilité de l'irrigation	18
7.5.	AUTRES	UTILISATIONS DE L'EAU	22
	7.5.1.	Pisciculture	23
	7.5.2.	Mines, industrie, artisanat, tourisme	23
7.6.	CONCLUS	IONS ET RECOMMANDATIONS	25
	7.6.1.	Conclusions	
	7.6.2.	Recommandations	
RTDTI	OCD A DH T	7	30

TABLEAUX

7.1.	Superficies irriguées, par Région	2
7.2.	Typologie des systèmes d'irrigation	3
7.3.	Irrigation à partir des eaux de surface non pérennes	4
7.4.	Consommation moyenne des fruits et légumes à Bamako selon l'enquête	11
7.5.	Estimation des consommations de fruits et légumes provenant de cultures irriguées, des superficies et des besoins en eau correspondants, en 1989, 1996 et 2001	14
7.6.	Coûts de l'eau d'irrigation à partir des eaux de surface non pérennes	19
7.7.	Coûts de l'eau d'irrigation à partir des eaux souterraines	19
FIGU	RES	
7.1.	Extension des régions d'aménagements hydrauliques pour l'irrigation	16
7.2.	Coûts du m ³ d'eau (pompage à 5 m ³ /h et 3.000 h/an) hors coût du forage	20
7.3.	Coûts du m³ d'eau (pompage à 10 m³/h et 3.000 h/an) hors coût du forage	21

7

HYDRAULIQUE AGRICOLE ET AUTRES UTILISATIONS

L'irrigation s'est développée au Mali essentiellement à partir des fleuves et des rivières permanents (principalement dans les vallées du Niger et de ses affluents pérennes, beaucoup moins dans celles encaissées du Sénégal et de ses affluents) et très peu à partir des eaux de surface non pérennes et des eaux souterraines. Dans une perspective d'aménagement équilibré du territoire, ces deux derniers types de ressources en eau représentent pourtant une alternative intéressante de développement car elles sont, à la différence des fleuves et rivières, bien réparties sur l'ensemble du territoire. On examinera ici quelle peut être la contribution de ces ressources au développement global de l'irrigation et, par là-même, à la sécurité alimentaire, à l'amélioration du niveau de vie du milieu rural et de l'environnement.

D'autres utilisations de ces ressources sont possibles pour la pisciculture, l'industrie et l'artisanat.

7.1. SITUATION ACTUELLE

7.1.1. Place de l'irrigation dans la production agricole

Grâce à l'importance des ressources en eau de surface pérenne (de l'ordre de 50 milliards de m³/an) et à un effort technique, financier et institutionnel de plus de 60 ans, le Mali a équipé 175.000 à 190.000 ha pour l'irrigation bien que 115.000 ha soient en mauvais état et nécessitent une réhabilitation [7-1 et 7-2].

Sur un total de 2,5 millions d'hectares cultivés, seulement 130.000 ha (5 %) sont actuellement effectivement cultivés sous irrigation en année moyenne. Ils produisent 195.000 tonnes de céréales, soit 13 % des céréales produites en année moyenne (1,5 millions de tonnes). Ils produisent également 19.000 t de sucre et 70.000 t de fruits et légumes. La valeur des productions irriguées est de l'ordre de 25 milliards de F.CFA par an dont 54 % pour les céréales [7-2].

La place de l'irrigation à partir des eaux de surface non pérennes et des eaux souterraines est, on le verra plus loin, difficile à évaluer car très mal connue. Elle est de toutes façons sans commune mesure avec celle de l'irrigation à partir des fleuves et rivières permanents. L'exploitation de ce type de ressources ne pourra jamais fournir des productions du même ordre ni en quantité du fait des faibles superficies irriguées, ni en variété de produits pour des raisons de coût et de commercialisation. Cependant, ces ressources, si on parvient à lever un certain nombre de contraintes, peuvent jouer un rôle particulier, grâce à leur ubiquité, dans le développement du milieu rural, parallèlement aux grands aménagements.

7.1.2. Irrigation à partir des ressources en eau de surface pérenne

La quasi totalité des aménagements est faite à partir d'eaux de surface pérennes (fleuves, rivières et lacs).

Le tableau 7.1 ci-après indique, par Région, les superficies aménagées actuellement pour l'irrigation à partir des eaux de surface pérennes ainsi que les superficies réellement exploitées; on remarque notamment que plus de la moitié de ces superficies sont localisées dans la Région de Ségou grâce à l'Office du Niger (67.000 ha).

La carte de la figure 7.1 montre l'extension des huit régions agricoles du Mali utilisant les eaux de surface pérennes [7-4].

Tableau 7.1	Superficies	irriguées,	par	Région	(en	ha))
-------------	-------------	------------	-----	--------	-----	-----	---

REGION	GRANDS e AMENAG (100 ha		PETITS PERIMETRES IRRIGUES TOTAL			TAL
REGION	Superf. aménagée	Superf. exploitée	Superf. aménagée	Superf. exploitée	Superf. amén ag ée	Superf. exploitée
KAYES KOULIKORO SIKASSO SEGOU MOPTI TOMBOUCTOU GAO	185 8.000 7.470 101.782 38.735 19.885 13.785	185 4.100 7.470 68.960 22.000 15.200 10.100	437 	287 - 60 - 200 - 730	622 8.000 7.530 101.782 38.935 19.885 14.515	472 4.100 7.530 68.960 22.200 15.200 10.830
TOTAL	189.842	128.015	1.427	1.277	191.269	129.292

On observe que:

- la presque totalité des superficies intéressent de grands et moyens aménagements (100 ha et plus par périmètre);
- le ratio surface exploitée/surface aménagée est de 68 % en moyenne; mais en fait, ce ratio est incertain et très variable d'une année à l'autre, surtout pour les périmètres en submersion contrôlée dont les surfaces aménagées représentent 64 % du total.

Les systèmes d'irrigation mis en oeuvre au Mali sont très variés. Le tableau 7.2 ciaprès en donne les différents types qui sont réunis dans deux grands groupes :

- les systèmes d'irrigation en maîtrise totale de l'eau (par gravité ou par pompage): ils concernent actuellement 48 % des superficies aménagées et 37 % du potentiel d'irrigation,
- les systèmes d'irrigation en maîtrise partielle de l'eau (submersion contrôlée, cultures de décrue); ils concernent donc 52 % des superficies aménagées actuellement et 63 % du potentiel d'irrigation.

Tableau 7.2 - Typologie des Systèmes d'irrigation (d'après DNGR/FAC [7-2]

CULT.			FFG.MTAN DE T	TION BT DISTRIBUTION DE L'EAU		LOCALISATION	SUPERFICIE	(x1000 ha
DONIN	21	RIENES DE MORT	PISALION RE D	ISTRIBUTION DR F RAU	CODE	TYPB	aménag.	potentiel
			Gravitaire	Plan d'eau contrôlé Irrigation + gravité	la	Sélingué	58,9	123,1
		GRANDS BT	total	Submersion Plan d'eau contrôlé	1 b	-	7,1	9,3
	MAITRISE	MOYENS PERIMETRES (>100 ha)		Irrigation + gravité	2 a	San Ouest casier A	1,1	9,5
1.	TOTALE		Pompage	Submersion	2 b	San Ouest casier B	1,1	1,9
RIZ		PRTITS PRRIMETRES	Gravitaire	total	3a	Petite Barra. Nali Sud	0	1,0
		PENINDIRES	Pompage + g	ravitaire	3 b	Forgho	1,7	5,4
	L	MBRSION PROLER	Contrôle pa	rtiel	4	Riz Ségou Riz Mopti	62,7	117,1
	CON		Contrôle ga	ranti	Б	Dioro	15,0	111,8
		AMBNA	GEMENT DE BA	8 - FONDS	6	Mali Sud	1,6	4,4
						TOTAL 1	149,2	383,5
		GRANDS BT	Gravitaire	total	7 a	Cane à sucre Siribala	6,6	28,9
		MOYENS	Pompage + g	ravitaire	7 b	Diré	1,1	14,8
2.	MAITRISE	PERIMETRES	Pompage + a	spersion	7с	Diré Tacharam	0,1	3,2
AUTRES	TOTALE		Petites pom	pes et pompes mobiles	8	Mar. Bamako Vallée Sénégal	4,2	4,6
CULT.		PETITS PERIMETRES (Familiaux)	Exhaure manuelle	Petites pompes et pompes mobiles	9a	Maraîchage Bamako	2,3	2,3
		(remiliant)	ou par traction animale	MODITES	9 b	Palmeraie Kidal	0	0,1
		· .	- Guinale	-id + petits barrages	9c	Pays Dogon	0,3	2,4
		AMENAGE	IENT CULTURES	DE DECRUE	10	Lacs	12,2	126,0
						TOTAL 2	26,8	182,3
					10	TAL GENERAL	176,0	565,8

On constate une différence entre le total des superficies aménagées des tableaux 7.1 et 7.2 due essentiellement à l'imprécision des chiffres fournis par les projets d'irrigation et surtout ceux en submersion contrôlée, d'autant plus que le tableau 7.2 inclue certaines superficies irriguées à partir d'eau de surface non pérennes (codes 3a, 6, 9b et 9c).

La riziculture occupe actuellement 84% des superficies exploitées et le maraîchage 4% [7-3]. La mise sous irrigation de l'ensemble des superficies irrigables abaisserait à 68 % le taux des superficies consacrées à la riziculture.

Le secteur de l'irrigation au Mali est donc actuellement surtout constitué par de grands aménagements souvent en submersion contrôlée et consacrés essentiellement à la riziculture.

Les aménagements actuels réalisés à partir des eaux de surface permanentes sont situés le long des grands axes fluviaux. Ils intéressent (partiellement) une centaine d'Arrondissement du Mali qui totalisent une population d'environ 3,5 millions d'habitants, soit près de 45 % de la population du Mali. On évalue ainsi l'importance de la mise en valeur de cette ressource en eau, d'autant que les productions réalisées le long de ces fleuves et rivières contribuent largement à la couverture en riz de l'ensemble du pays et l'approvisionnement en fruits et légumes de la plupart des principaux centres urbains du Mali, notamment de la capitale et de 6 des 7 chefs-lieux de Région.

7.1.3. Irrigation à partir des ressources en eau de surface non pérenne

On ne considérera ici que les cultures irriguées à partir d'un aménagement, les cultures de décrue pratiquées dans les vallées sans ouvrage de retenue n'étant pas assimilées ici à des cultures irriguées.

En l'absence d'un recensement exhaustif des sites de cultures irriguées à partir de ressources en eau non pérennes, un inventaire provisoire [SDM/ENP/1] a été fait.

Tableau 7.3. - Irrigation à partir des eaux de surface non pérennes

REGION	TYPE DOMINANT D'AMENAGEMENT	NOMBRE D'AMENAGEM.	SUP. IRRIGUEE (ha)
1. Kayes	Bas-fonds	23	25
2. Koulikoro	Petits barrages	6	71
3. Sikasso	Bas-fonds et petits barrages	37	3.914
5. Mopti	Petits barrages Pays Dogon	77	96
6. Tombouctou	Forages	22	200 (?)
,	TOTAUX	165	4.306

Cet inventaire provisoire devra être complèté par la DNGR, car bien qu'il inclue de nombreux aménagements actuellement hors d'usage, les superficies irriguées à partir des eaux de surface non pérennes doivent être de l'ordre de 5.000 hectares actuellement et le nombre d'aménagements doit être supérieurs à 200.

7.1.4 Irrigation à partir des ressources en eau souterraine

Les superficies irriguées à partir des eaux souterraines n'ont pas fait non plus l'objet d'un inventaire systématique. Aussi, a-t-on très peu de données quantitatives sur les superficies arrosées à partir de puits villageois, de forages équipés de pompes manuelles ou irrigués à partir de pompes solaires ou de motopompes diésel sur forage. Il en est de même en ce qui concerne les plans de culture, les rendements et les revenus agricoles.

Cependant, étant donné l'importance de ce type d'irrigation pour le développement rural, les enquêtes menées sur les moyens d'exhaure ont également permis de recueillir quelques informations intéressantes [SDM/SOC/5].

* Irrigation à partir des puits modernes et des forages équipés de pompes à motricité humaine

L'enquête a recueilli les éléments (partiels) d'information suivants (sur 361 pompes en fonctionnement dans la zone d'enquête : Régions de Koulikoro, Ségou et Mopti) :

- 26 % des pompes sont utilisés pour le jardinage, mais l'interprétation de l'enquête montre que l'utilisation des pompes à cette fin est limitée par la disponibilité et le débit de la pompe ;
- dans la région de Koulikoro où, notamment pour des raisons de marché, la demande en eau d'arrosage est forte (surtout de la part des femmes), la proportion de pompes utilisées pour le jardinage est plus importante que pour l'ensemble de la zone et atteint 36 %;
- fréquemment, la question de l'utilisation de la pompe oppose les femmes, plus intéressées par le jardinage, aux hommes privilégiant l'abreuvement du bétail et la fabrication du banco.

L'utilisation journalière de 7 pompes à fait l'objet de mesures dans le cadre de cette enquête. Le taux d'utilisation pour le jardinage (en % des quantités pompées) est faible : négligeable dans 5 cas sur 7 et très faible (2 et 4 % respectivement) dans les 2 autres cas où les quantités journalières pompées étaient approximativement de 5.000 et 3.000 litres/jour, car l'enquête a été réalisée dans une période sans irrigation (Juin).

Il est évidemment impossible de tenter une extrapolation à partir de données aussi fragmentaires. Tout au plus peut-on chercher à se faire une idée de l'ordre de grandeur des quantités d'eau utilisées pour le jardinage à partir des pompes manuelles.

Le jardinage est surtout pratiqué de Novembre à Mars et l'on peut estimer qu'une pompe ou un puits sur 5 en moyenne est utilisée pour le jardinage soit environ 1.500 points d'eau sur les 7.700 utilisés fin 88 (6.200 forages avec pompe et 1.500 puits modernes). Si, compte tenu des autres utilisations, 1 m³/j est consacré à l'arrosage des jardins, la surface arrosée par une pompe est de l'ordre de 10 ares au maximum. La superficie totale ainsi arrosée serait de l'ordre de 150 ha au maximum.

* Micro-irrigation à partir de puits ou puisards traditionnels

Selon les résultats de l'enquête sur les moyens d'exhaure, la micro-irrigation par arrosage manuel à partir des puits traditionnels et des puisards s'exerce encore largement.

Bien qu'il y ait peu de données de terrain non seulement sur les superficies ainsi arrosées, mais aussi sur les puits et puisards traditionnels, on peut estimer que vu le nombre considérable de ces points d'eau, la superficie totale arrosée est très supérieure à la superficie arrosée à partir de puits modernes ou des forages équipés de pompes manuelles.

Dans la zone des enquêtes, 9 villages sur 10 possèdent des puits traditionnels et leur nombre est 14 fois supérieur à celui des puits modernes, sans parler des puisards.

L'ordre de grandeur des superficies ainsi arrosées pourrait donc être au moins 10 fois supérieur à celui des superficies arrosées à partir des puits modernes et des pompes manuelles, soit autour de 1.500ha.

* Irrigation à partir de motopompes alimentées par batteries photovoltaïques

Plus d'une centaine de motopompes alimentées par batteries photovoltaïques ou "pompes solaires" ont été installées, depuis 1977, au Mali qui est ainsi le pays sahélien le mieux équipé actuellement.

Essentiellement installées sur des forages (11 seulement pompent l'eau de rivière), elles sont réparties comme suit [7-5 et 7-6]:

- San/Bla (zone Mali Aqua Viva): 64

- Nara, Kolokani, Bamako : 24

- Tombouctou-Gao : 10

- Bougouni (zone Helvetas) : 5

- Divers (Kayes, Ségou, Mopti) : 8

111

A part Nossombougou [7-7], aucun renseignement n'est disponible sur les superficies irriguées à partir de ces pompes installées à l'origine pour les besoins domestiques.

A à Nossombougou (centre rural de 3.500 habitants disposant en outre de 4 pompes manuelles), la pompe solaire, installée en 1984 a une capacité de 110 m³/j. Elle a permis à 17 maraîchers et maraîchères d'irriguer environ 2 ha depuis 1986. En 1985, l'irrigation de 1,27 ha a rapporté environ 3 millions de F.CFA aux exploitants. Le prix de vente de l'eau a été porté par le Comité de gestion de l'eau de 25.000 F.CFA/ha/an en 1985 à 75.000 F.CFA/ha/an en 1986, soit un prix de l'eau de 12,5 F.CFA/m³ (à raison de 6.000 m³/ha/an) (1).

On estime qu'au total, la centaine de pompes solaires irrigue de l'ordre de 150 ha.

⁽¹⁾ Ce faible coût de l'eau s'explique du fait que les investissements initiaux ont été financés sur un don, le coût limite de l'eau s'établissant autour de 35 F.CFA/m³.

* Irrigation à partir de motopompes alimentées par groupe électrogène

Comme il n'existe aucune donnée précise sur les superficies irriguées à partir de ce type de pompage et qu'il est utilisé surtout le long du fleuve Niger pour de l'irrigation privée, on considérera que la superficie irriguée par motopompes à partir des eaux souterraines est de l'ordre de 200 hectares, chiffre qui devrait être précisé à l'issue de l'enquête en cours réalisée par la Banque Mondiale sur l'irrigation privée.

7.1.5. Récapitulation

- Superficie irriguée à partir des eaux de surface : 130.000 pérennes

- Superficie irriguée à partir des eaux de surface non pérennes : 5.000

- Superficie irriguée à partir des eaux souterraines : 2.000

. puits modernes et pompes manuelles (150 ha)

. puits et puisards traditionnels (1.500 ha)

pompes solaires (150 ha)
moto-pompes (200 ha)

TOTAL 137.000 ha

On constate que la superficie (très approximative) irriguée à partir d'eaux de surface non pérennes et d'eaux souterraines est donc actuellement de l'ordre de 5 % des superficies irriguées totales et à peine plus de 3,5 % des superficies aménagées.

Cependant, l'intérêt et l'importance de ces petits aménagements ne doivent pas être négligés car ils résultent dans le fait qu'ils intéressent la plus grande partie du territoire, ce que la DNGR appelle l'arrière-pays ou la zone exondée, et plus de la moitié de la population du Mali. C'est la raison pour laquelle le Schéma Directeur leur accorde une particulière place en développant cet aspect de l'hydraulique agricole peu exploré jusqu'à présent.

7.1.6. Conservation des Eaux et des Sols

La politique de sécurité alimentaire devrait envisager en premier lieu d'augmenter l'infiltration de l'eau dans les sols cultivés grâce à la généralisation des pratiques de conservation des eaux et des sols (CES) et améliorer ainsi la production des cultures pluviales, principale source de céréales et principale activité des populations rurales. "En premier lieu", car cette technique qui intervient en tête du cycle de l'eau, est simple à mettre en oeuvre et performante du point de vue économique. Réalisée en grande partie par les villageois, elle permet des gains de production de céréales pluviales de 10 % environ.

Bien que les techniques de CES soient encore peu répandues au Mali, des expérimentations - démonstrations ont été amorcées au sud du pays depuis 1984 par la Division des Recherches sur les Systèmes de Production Rurale et par le Projet de Lutte Anti-Erosive de la Compagnie Malienne de Développement des Textiles : approche d'aménagement de terroir, mise en défens, diguettes en pierres, introduction de techniques culturales conservatrices des eauxet des sols, bandes enherbées, haies vives, etc... [7-8 et SDM/ECO/2].

D'autres expériences ont été menées par l'Institut National de Recherches Zootechniques Forestières et Hydrobiologiques (INRZFH) avec le Ministère de l'Elevage et de l'Environnement, notamment dans les régions de Kaniko et de Boron, au nord de Koulikoro. Elles ont rencontré beaucoup de succès auprès des populations concernées qui entretiennent et étendent chaque année les zones traitées par diguettes.

7.2. PETITS PERIMETRES IRRIGUES VILLAGEOIS (PPIV)

Le petit périmètre irrigué villageois (désigné communément PPIV) correspond à une superficie de quelques hectares, 5 au maximum, généralement irriguée à partir des eaux souterraines ou des eaux de surfaces non pérennes, hormis le jardinage en bordure des fleuves permanents.

Le PPIV est l'unité de base qui sera prise en compte dans le Schéma Directeur.

Actuellement, les quelques PPIV existants au Mali utilisent surtout des eaux de surface alors que les pompages d'essai sur les forages exécutés pour l'hydraulique villagesoie ont démontré que près de 40 % d'entre eux débitent plus de 5 m³/h, dont 15 % plus de 10 m³/h, notamment dans les aquifères généralisés.

Les études menées depuis 1983, par le projet MLI/84/005 sur les quelques sites équipés d'une pompe solaire (Nossombougou par exemple) ont montré que, malgré la persistance d'années de pluviométrie déficitaire, la recharge des aquifères a été suffisante pour assurer le renouvellement des prélèvements effectués par ces pompages à relativement gros débit.

C'est sur cette base que, dès 1985 trois projets pilotes ont été identifiés en vue d'expérimenter la meilleure manière de valoriser ces ressources importantes et relativement bien réparties sur l'ensemble du territoire [SDM/IRG/1]:

- * Le projet PNUD/OPS MLI/85/006 [7-9, 7-10 et 7-11] a d'abord consisté à créer dans la région nord de Bamako, 4 petits périmètres irrigués de 3 à 4 ha chacun à partir de 7 forages existants et débitant de 7 à 14 m³/h à 30-40 m de profondeur. Pour utiliser au maximum l'eaux disponible autour des 4 villages, on a conçu un modèle de petit périmètre trop intensif inacapplicable qui a nécessité une reformulation du projet vers une utilisation plus réaliste à l'échelle du village, mais basé essentiellement sur des cultures maraîchères.
- * Le projet CIRAD [7-12] propose un modèle de petite ferme familiale de 3 ha irriguée à partir d'un forage de 5 m³/h avec exhaure animale et qui intègre des cultures vivrières en hivernage (2,4 ha de sorgho à haut rendement), des cultures maraîchères (4 seulement) sur 0,1 ha en hivernage et 0,2 ha en contre-saison, principalement pour la vente, et de l'embouche (sur 0,5 ha de cultures fourragères).

Ce modèle, plus simple mais ambitieux, est également rentabilisé par des rendements élevés, mais surtout il suppose l'émergence de paysans-entrepreneurs acceptant de faire un saut important vers un système agricole individuel et plus moderne que les pratiques actuelles et acceptant en particulier l'embouche, thème fort débattu ces dernières années et considéré par beaucoup comme irréaliste dans les conditions socio-économiques actuelles d'exploitation du troupeau.

* Le projet Mali-Nord-Est (financé par le Fonds Africain de Développement) a été conçu par le Centre d'investissement de la FAO [7-13] pour donner à 900 familles d'éleveurs en voie de sédentarisation des Cercles de Gourma Rharous et de Ménaka la possibilité de produire eux-mêmes une part de leur consommation de céréales et de légumes grâce

à 900 puits cimentés peu profonds avec exhaure par dalou tiré par des animaux et permettant chacun l'irrigation de 0,3 ha.

Comme aucun de ces projets n'a encore été mis en oeuvre, l'irrigation à partir des eaux souterraines continue à se référer à des modèles théoriques.

Il faut citer cependant de nombreux PPIV réalisés à partir des eaux de surface non pérennes, notamment avec l'aide d'ONG et une forte participation villageoise. Ces PPIV sont consacrés essentiellement à la riziculture (aménagements de bas-fonds, parfois riz flottant dans la retenue et céréales en cultures de décrue), mais aussi au maraîchage, tel les oignons du pays Dogon, souvent réalisé par arrosage manuel à partir de la retenue ou de puisards renouvelés chaque année et exploitant la nappe phréatique en aval du barrage.

7.3. BESOINS EN EAU

7.3.1. Normes

a) Normes d'irrigation

Dans le cadre du Schéma Directeur, il n'a pas été jugé nécessaire d'entrer dans le détail de la détermination des besoins en eau des cultures, objet de nombreuses publications. Il est à noter que l'évapotranspiration potentielle varie de 4 mm/j pendant la saison sèche et fraîche (Novembre-Mars) à 5-6 mm/j pendant la saison sèche et chaude (Avril-Juin).

Les besoins en eau pour l'irrigation dépendent des cultures et de l'efficacité des systèmes d'irrigation; ils ont été fixés, dans le Schéma Directeur, comme suit :

- 6.000 m³ par hectare et par cycle pour les cultures autres que celle du riz (maraîchage en particulier), en considérant en général 2 cultures sur 5 à 6 mois, d'octobre à mars;
- 15.000 m³ par hectare et par cycle pour la riziculture, mais dans certains systèmes comme l'Office du Niger, on enregistre des chiffres très supérieurs sans que les rendements soient plus élevés [7-2].

b) Normes de productions

Les rendements de la culture du riz sont très variables [7-2]: actuellement, ils sont en moyenne de 0,66t/ha en submersion contrôlée et de 1,8t/ha en maîtrise totale de l'eau. Compte tenu des réhabilitations prévues, ces moyennes pourraient atteindre respectivement 0,96 et 2,2 t/ha.

En ce qui concerne les cultures maraîchères et fruitières qui constituent l'un des objectifs de mise en valeur des eaux souterraines et des eaux de surface non pérennes, on appliquera une norme de production de 25 tonnes à l'hectare ou de 40 ares pour 1 tonne de fruits et légumes.

Ces normes ont été utilisées pour l'évaluation des coûts limites de l'eau pour les besoins de l'irrigation [SDM/ECO/1] (Annexe 4).

c) Normes de consommation

En ce qui concerne les céréales, les besoins sont de l'ordre de 225 à 240 kg/hab/an, dont 40 kg de riz ou 60 kg de paddy; soit des besoins nationaux prévisibles en 2001 de 2,4 à 2,6 millions de tonnes de céréales, dont 650.000 t de paddy. Les besoins de la population de la zone sahélienne au nord de l'isohyète 500 mm seront de 400.000 t dont 100.000 t de paddy.

Si tous les projets d'irrigation programmés étaient réalisés d'ici 2001 et en comptant sur une augmentation de la production céréalière pluviale de 1,5 % par an (augmentation combinée des superficies et des rendements), la production céréalière du Mali pourraient se décompter ainsi (en millions de t/an):

Zone soudanienneZone sahélienne	e	Cult. pluviales 1,91 0,025	Cult. irriguées 0,427 0,052	Total 2,337 0,077
	TOTAL	1,935	0,479	2,414

On constate donc qu'en matière de céréales, le Mali pourrait atteindre globalement d'ici 2001 l'autosuffisance (sauf années de fort déficit pluviométrique), bien que la production de riz reste insuffisante, nécessitant de recourir à l'importation. Par ailleurs, la zone sahélienne demeurera déficitaire et devra être alimentée par les surplus de la zone soudanienne [7-2].

En ce qui concerne les fruits et légumes, les besoins aux horizons 1996 et 2001 des deux prochains plans ne peuvent qu'être estimés à partir d'hypothèses concernant notamment les possibilités de commercialisation et donc de consommation des fruits et légumes provenant des cultures irriguées.

Ce sont en effet surtout ces cultures qui, sous réserve d'un marché suffisamment rémunérateur et stable (voir ci-après sous-chapitre 7.4), peuvent justifier financièrement et économiquement les PPIV.

Une enquête directe auprès de 300 consommateurs urbains, répartis sur les 6 Communes de Bamako, a été réalisée par le projet MLI 84/005 en Juin 1989 [SDM/ECO/2], ainsi que sur le prix des fruits et légumes pratiqués sur une dizaine de marchés de BAMAKO (avec pesée des unités traditionnelles correspondantes: tas, panier, botte, etc...).

Ces enquêtes ont permis d'obtenir :

- de la part des consommateurs enquêtés, des déclarations d'achat portant sur la période de l'enquête et sur le reste de l'année. Pour chaque produit, le consommateur interrogé était invité à indiquer sa consommation hebdomadaire en saison d'abondance et en saison de rareté du produit,
- sur les marchés, pour chaque produit considéré, les prix maximum et minimum saisonniers, par kg.

L'examen critique des résultats a montré que les consommateurs connaissaient mieux leurs dépenses que les quantités achetées (en unités traditionnelles) correspondantes. La simple prise en compte des déclarations de quantités conduisait manifestement à des surestimations souvent aberrantes. On a donc procédé comme suit:

- calcul, par ménage et par produit, de la dépense moyenne hebdomadaire en période d'abondance d'une part, en période de rareté d'autre part,
- pondération de ces deux valeurs sur l'année compte tenu des durées respectives des périodes d'abondance et de rareté,
- calcul de la consommation annuelle correspondante,
- par produit, cumul des consommations des ménages enquêtés et calcul de la consommation moyenne annuelle par personne compte tenu du nombre de personnes dans chaque ménage.

Les résultats (en kg par personne et par an) sont données au tableau 7.4 ci-après.

Tableau 7.4 - Consommation moyenne de fruits et légumes (kg par habitant et par an) à Bamako selon l'enquête

TUBERCULE Patate douce Pomme de terre Sous-total BANANE PLANTAIN 35,8 AUTRES LEGUMES	Citron Goyave	8,8 18,5 1,4 2,1 9,0 15,9
Pomme de terre 10,8 Sous-total 21,6 BANANE PLANTAIN 35,8	Citron Goyave Mandarine Mangue	1,4 2,1 9,0 15,9
Sous-total 21,6 BANANE PLANTAIN 35,8	Citron Goyave Mandarine Mangue	2,1 9,0 15,9
BANANE PLANTAIN 35,8	Mandarine Mangue	9,0
	Mangue	15,9
AUTRES LEGUMES		
AUTRES LEGUMES	Melon	F 0
		5,8
Aubergine 2,3 Carotte 2,5		12,2
Chou 2,1		
Concombre 8,9 Courgette 8,0		3,8
Gombo frais 2,3 Gombo sec 0,5	Pastèque	18,5
Oignon frais 1,9		
Oignon sec 0,1 Piment frais 0,1		
Poivron 0,5 Salade 8,2		
Tomate fraîche 2,0		
Sous-total 39,4		
TOTAL "LEGUMES" 96,8	TOTAL FRUITS	96,0

Bien entendu, la valeur de l'enquête est limitée par son unicité (1 seul passage), sa portée (300 ménages seulement) et son extension (Bamako seulement). Pour des produits dont la production et la consommation sont le plus souvent fortement saisonnières, il serait nécessaire de procéder à plusieurs passages. D'autre part, l'enquête a porté sur des déclarations et non sur une pesée des quantités consommées (ce qui est pratiqué lors d'enquêtes nutritionnelles, relativement lourdes).

Les niveaux de consommation résultant de l'exploitation de l'enquête sont élevés. Selon des estimation de la FAO (non publiées), la consommation moyenne nationale de fruits et légumes au Mali aurait été de 26 à 29 kg (non compris tubercules) par habitant et par an au cours des années 1981 à 1986. Le bilan alimentaire 1986 établi par la FAO fait apparaître les éléments (estimés) suivants:

- légumes (hors tubercules) : 25,9 kg/hab/an

- tubercules (manioc, patates

douces, pommes de terre) : 16,8 kg/hab/an

- fruits (y compris bananes) : 1,3 kg/hab/an

TOTAL 44 kg/hab/an (soit, en 1989, environ 350.000t pour le Mali)

Par rapport à d'autres pays sahéliens et toujours selon les estimations de la FAO, le Mali se trouverait à un niveau moyen.

Il faut toutefois préciser que ces estimations ne reposent pas sur des enquêtes. D'autre part, les productions de fruits et légumes ne sont que très partiellement connues au niveau national [SDM/ECO/1].

De la comparaison entre les résultats de l'enquête directe effectuée à Bamako et les estimations de la FAO au niveau national, il ressort que la consommation de fruits et légumes à Bamako est très largement supérieure à la moyenne nationale. Ceci peut s'expliquer par les habitudes alimentaires et le niveau moyen de revenus plus élevé dans la capitale.

Cependant, les chiffres de la FAO sont sans doute sous-estimés, notamment en ce qui concerne la consommation des bananes (plantain et banane douce) et des mangues, très abondantes et commercialisées partout à bas prix au Mali, surtout en milieu rural.

Dans le cadre du Schéma Directeur, on s'intéressera aux produits dont la culture nécessite l'irrigation ou l'arrosage, c'est à dire :

- pour les légumes: patate douce, pomme de terre, aubergine, carotte, chou, concombre, courgette, gombo, oignon, piment, poivron, salade, tomate,
- pour les fruits : banane douce, citron, mandarine, orange, papaye, goyave.

Compte tenu de ce qui précède, on a fixé ainsi les consommations moyennes estimées par habitant et par an selon les catégories de localités indiquées au chapitre 3:

- Bamako : 120 kg/hab/an

- centres urbains autres que Bamako,

centres semi-urbains et ruraux : 70 kg/hab/an

- villages : 40 kg/hab/an

Faisant l'adéquation des populations respectives de ces catégories de localités, la consommation moyenne nationale de ces produits atteindrait 55 kg par habitant et par an en 1989.

7.3.2. Estimation des besoins en eau d'irrigation

a) Eaux de surface pérennes

Les aménagements hydrauliques pour l'irrigation à partir des fleuves (concernant principalement la riziculture) prélevaient en 1984 [7-1], pour 130.000 hectares irrigués, un volume de 3,2 milliards de m³ d'eau par an dont 21 millions sur le fleuve Sénégal et 350 millions sur le Bani. Cette consommation correspondrait à une irrigation de près de 25.000 m³/ha/an, très supérieure à la norme habituelle (15.000 m³/ha/an).

Une meilleure maîtrise de l'irrigation permettrait d'irriguer la totalité des superficies aménagées (190.000 ha) avec la même quantité d'eau.

A long terme, la mise sous irrigation de la totalité du domaine irrigable du Mali (565.000 ha), nécessaire pour atteindre l'autosuffisance, impliquer ait des prélèvements de près de 10 milliards de m³ par an, dont 350 millions sur le fleuve Sénégal et 2,3 milliards sur le Bani, le reste sur le fleuve Niger. Ils ne représentent que 5 à 20 % des voulumes écoulés par ces fleuves (voir Chapitre 4).

b) Eaux souterraines et eaux de surfaces non pérennes :

En ce qui concerne les eaux de surface non pérennes intéressant les cultures céréalières, la valeur des prélèvements est évidemment comparativement très faible et seulement fonction des caractéristiques des aménagements car les ressources resteront toujours supérieures aux besoins.

En ce qui concerne l'irrigation de PPIV consacrée essentiellement à la production maraîchère, en se fondant sur une augmentation probable de la consommation des fruits et légumes avec l'amélioration du niveau de revenu et l'évolution prévisible des habitudes alimentaires, on a estimé que la consommation des fruits et légumes augmentera de 2 % par an. Partant des ratios 1989, on arrive aux chiffres du tableau 7.4 pour 1989 et pour les projections en 1996 et 2001 tenant compte de l'accroissement de la population tel qu'indiqué dans le tableau 3.1 du chapitre 3.

Tableau 7.5. - Estimation des consommations de fruits et légumes provenant de cultures irriguées, des superficies et des besoins en eau correspondants, en 1989, 1996 et 2001

	1989	1996	2001	
- Population (milliers) . Bamako . Centres ruraux, semi-urbains et urbains . Villages	709 2037 5158	1011 2675 5444	1336 3135 5631	
TOTAL	7904	9130	10102	
- Consommation des fruits et légumes : . norme (kg/hab/an) . totale (milliers de t) . additionnelle par rapport à 1989 (milliers de t)	55 435 -	63 575 140	70 707 272	
- Superficies irriguées en milliers d'ha (1): . totales . additionnelles par rapport à 1989	17,4	23,0 5,6	28,3 10,9	
- Besoins en eau (2) en millions de m³/an . totaux . additionnels par rapports à 1989	209	276 67	340 131	

(1) rendement moyen annuel : 25 t/ha (confer § 7.3.1.b)

(2) 2 cycles de cultures par an : 2 X 6.000m³/ha/an = 12.000 m³/ha/an (confer § 7.3.1.a).

Sous réserve d'une rentabilité financière suffisante, les villageois pourront ne pas se limiter à la production maraîchère, mais exploiter de petites fermes familiales ou villageoises irriguées du type défini par le projet CIRAD [7-12], intégrant des cultures vivrières en hivernage, des cultures maraîchères et une activité d'embouche.

De tels aménagements porteraient la superficie irriguée totale à 3 ha dont 0,2 ha seraient consacrés aux cultures maraîchères. Le développement de ce système augmenterait sensiblement les besoins unitaires en eau pour chaque périmètre aménagé de cette façon.

On peut également ajouter à ces productions l'arrosage de bosquets villageois envers lesquels les villageois montrent un très grand intérêt.

7.4. CONTRAINTES ET LIMITATIONS

7.4.1. Contraintes et limitations liées aux ressources et à leur exploitation

a) Eaux de surface pérennes

L'étude de 1984 [7-1] concluait que les besoins globaux en eau à long terme pour l'irrigation de 565.000 ha de terres irrigables, soit environ 10 milliards de m³/an, pourraient être couverts par les ressources en eau des grands fleuves qui écoulent en

moyenne 25 milliards de m³ de juin à décembre, mais moyennant de grands aménagements hydrauliques régulateurs (Sélingué, Manantali, Talo, Djenné...) et sous réserve d'accords avec les pays riverains, la Guinée en amont, le Sénégal, le Niger et le Nigeria en aval.

L'étude menée en 1989 [7-2] énumère, par rapport à celle de 1984, des hypothèses simplificatrices portant sur les consommations théoriques et leur influence sur les calendriers culturaux et les rendements, sur l'influence de la cote des pointes de crue, sur les conditions de gestion des ouvrages à buts multiples de Sélingué et de Manantali, sur les possibilités de réduire les consommations d'eau de l'Office du Niger,... Elle propose en conclusion qu'une étude plus approfondie soit menée sur l'adéquation entre les ressources et les besoins, proposition reprise dans la fiche de projet A10 au Chapitre 9 du Schéma Directeur.

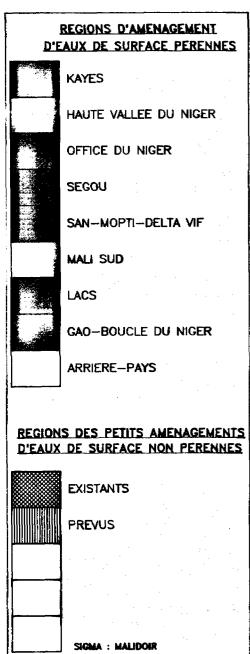
b) Eaux de surface non pérennes

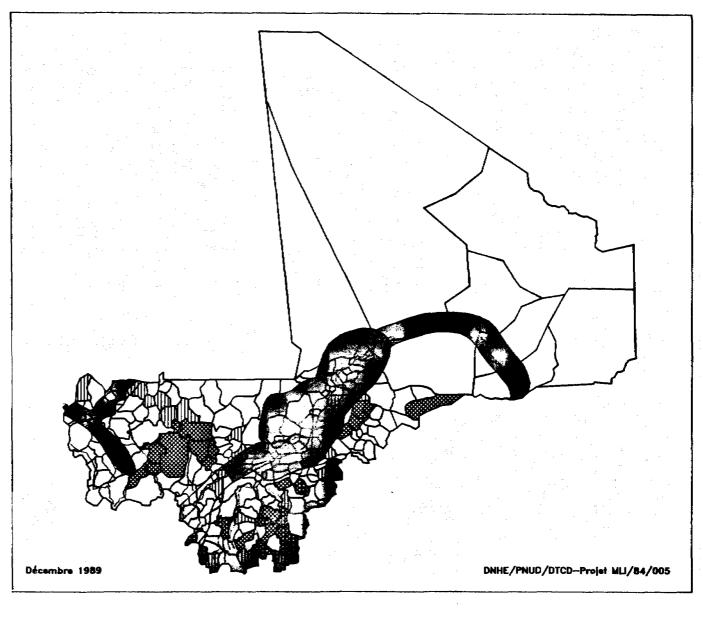
Bien que mal connues les surfaces irrigables à partir des ressources en eau de surface non pérennes ont été évaluées par planimétrage [SDM/ENP/1] à partir des résultats du Projet Inventaire des Ressources Terrestres (PIRT) [7-13]. Ainsi, les zones susceptibles de petits aménagements montrées par la figure 7.1 sont dispersées sur l'ensemble du territoire, mais les contraintes climatiques et techniques applicables à chaque site nécessitent des enquêtes précises et des projets pilotes qui sont programmés dans les fiches de projet A7 et A8 au Chapitre 9.

c) Eaux souterraines

Les contraintes d'exploitation des eaux souterraines ont été définies au chapitre 4 et la figure 4.13 de ce même chapitre permet de situer les zones favorables en fonction de conditions d'exploitation optimale de ces ressources (Fiche de projet A9, Chapitre 9).

Dans le cas de l'irrigation, les critères d'agressivité et de conductivité des eaux ont une importance moindre que pour l'alimentation en eau potable.


7.4.2. Contraintes et limitations liées au contexte socio-économique


Que les projets d'irrigation soient initiés, exécutés ou gérés par l'Etat, un office ou un organisme régional de développement, ou résultent d'une initiative de base, les principales contraintes socio-économiquess demeurent les mêmes : elles concernent le régime foncier, l'intégration avec d'autres activités (approche globale de "terroir villageois"), l'organisation des productions et la gestion des réseaux ainsi que les services d'appui à la production. Des solutions à ces contraintes sont proposées dans le rapport de l'étude 1989 [7-2].

En ce qui concerne plus particulièrement les contraintes liées aux PPIV, on a noté que, comme pour d'autres réalisations villagesoises, l'adhésion et la participation active de villageois sont une condition nécessaire au succès d'un projet d'irrigation, mais certaines contraintes plus spécifiques doivent être prises en compte :

- on sait par expérience que le projet n'intéressera pas tous les villageoi. Il pourra même être perçu par ceux qui n'en bénéficieront pas ou ne veulent pas en bénéficier comme un avantage accordé à certains malgré le fait que ceux-ci prennent un risque en travaillant davantage;
- comme on l'a dit, en matière d'irrigation, la question foncière est essentielle surtout par rapport au droit coutumier;

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

Cn.

- il y a lieu d'identifier clairement les besoins exprimés et leur bien-fondé [SDM/ENP/1]. En particulier il faut vérifier que l'agriculteur considéré n'est pas seulement intéressé par principe mais en raison des avantages pécuniaires ou de l'amélioration de ses conditions de vie induits qu'il espère obtenir;
- un autre facteur essentiel est la capacité de la communauté intéressée (une partie du village) à prendre effectivement en charge la gestion et la mise en valeur de l'aménagement, c'est-à-dire à l'exploiter chaque année, à l'entretenir et à acquitter les redevances correspondantes;
- il pourra arriver (ce peut être souhaitable pour des raisons de coût) que l'installation de pompage soit utilisée à la fois pour l'alimentation en eau potable et l'irrigation (Chapitre 5 et [SDM/ECO/2]). En ce cas, se posera le problème de l'imputation des coûts et de la répartition de l'utilisation de l'eau entre ces deux activités dont l'une intéressera le village tout entier et l'autre seulement une partie;
- comme dans le cas de l'approvisionnement en eau potable, une autre contrainte est le niveau de formation du ou des responsables de l'entretien des installations ainsi que la disponibilité des intrants (pièces, carburants...).

7.4.3. Contraintes et limitations de type institutionnel et structurel

Le développement de l'hydraulique agricole fait intervenir un grand nombre d'acteurs tant de l'Administration (DNA, DNGR, DNHE, IER, EDM, Offices de développement, Comités régionaux et locaux de développement) que des organismes de coopération externe, des ONG, des bureaux d'études et organismes de recherche, du secteur privé ou parapublic, des particuliers.

Si, en ce qui concerne les projets de grande hydraulique, la presque totalité des responsabilités est entre les mains d'organismes relativement bien structurés, il n'en est pas de même au niveau des petits et moyens aménagements qui ne s'insèrent pas toujours dans une politique cohérente où les tâches et les responsabilités sont clairement définies, délimitées et coordonnées.

L'analyse de ces contraintes, présentée dans le document de la DNGR [7-2], décrit les insuffisances de formation et de décentralisation, les limites des intervenants pour assurer la continuité des actions. Des solutions ont été proposées au cours de la Conférence Nationale sur le Secteur Eau et seront exposées au paragraphe 7.6 ci-après.

7.4.4. Contraintes et limitations liées au marché

Les productions susceptibles de justifier financièrement ou économiquement les coûts d'irrigation sont, sous réserve que les conditions de rentabilité soient réunies au plan local (coût de l'eau notamment) :

- le riz et autres céréales à haut rendement (sorgho, maïs, blé),
- les fruits et légumes,
- les fourrages
- les bosquets
- les palmiers dattiers.

Les possibilités de valorisation de ces produits sont actuellement uniquement fonction des conditions locales de l'offre et de la demande. On constate parfois des distorsions de prix par rapport aux prix indicatifs et des difficultés de commercialisation locale des produits, même pour le riz. Elles pourraient être éventuellement réduites au moyen de petites unités villageoises de stockage (banque de céréales) ou de décorticage, pouvant bénéficier de mesures de crédit incitatives.

Pour les fruits et légumes, l'insuffisance d'étalement des productions, l'absence de moyens de conservation des produits périssables autres que traditionnels (séchage limité en pratique à l'oignon et au piment) et le coût des transports sont tels que le marché est vite saturé localement.

Comme dans bien d'autres pays, il faut donc s'attendre à une limitation des productions maraîchères en fonction des possibilités du marché. C'est un des points essentiels sur lesquels doit porter l'enquête détaillée préalable à toute réalisation de projet (Fiches de projet A8 et A9).

Il en est de même pour les fourrages et les céréales dont la valorisation dépend essentiellement des conditions économiques locales.

Pour les cultures fourragères, il s'agira notamment du coût comparé des fourrages irrigués et des ressources fourragères alternatives.

Pour les céréales, il s'agira, selon les cas, d'une comparaison de leur coût avec celui des céréales pluviales produites dans la même zone ou, si une telle culture n'est pas possible ou est trop aléatoire, d'une comparaison avec le coût des céréales produites à meilleur compte dans des zones plus ou moins éloignées (zone soudanienne généralement excédentaire), donc nécessitant un transport.

7.4.5. Contraintes et limitations liées au coût de l'eau et à la rentabilité de l'irrigation

a) Coûts de l'eau

Le coût de l'eau est le premier facteur de rentabilité de l'irrigation et, notamment, l'une des contraintes majeures de l'exploitation des eaux souterraines.

En ce qui concerne les eaux de surface pérennes, les coûts d'aménagement sont extrèmement variables d'un projet à l'autre. En submersion contrôlée, ils vont de 80.000 à 950.000 F.CFA/ha tandis qu'en maîtrise totale ils varient de 1,6 à 5 millions de F.CFA/ha. Des études menées par l'IER soulignent la précarité des rentabilités, surtout en maîtrise totale, pour les cultures céréalières. L'étude DNGR conclut que "d'une façon générale, les résultats de l'analyse financière ne permettent jamais d'envisager le remboursement par les bénéficiaires des coûts d'investissement lors qu'ils agit de projets à vocation vivrière".

En ce qui concerne les eaux de surface non pérennes et les eaux souterraines, le calcul des coûts de l'eau est détaillé en Annexe 4 à laquelle le lecteur se reportera. On ne retiendra ici que les montants finals récapitulés dans les tableaux 7.6 et 7.7.

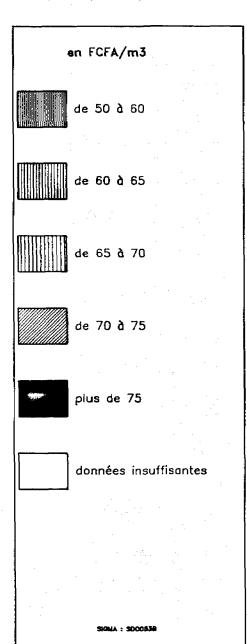
Tableau 7.6 - Coûts de l'eau d'irrigation à partir des eaux de surface non pérennées

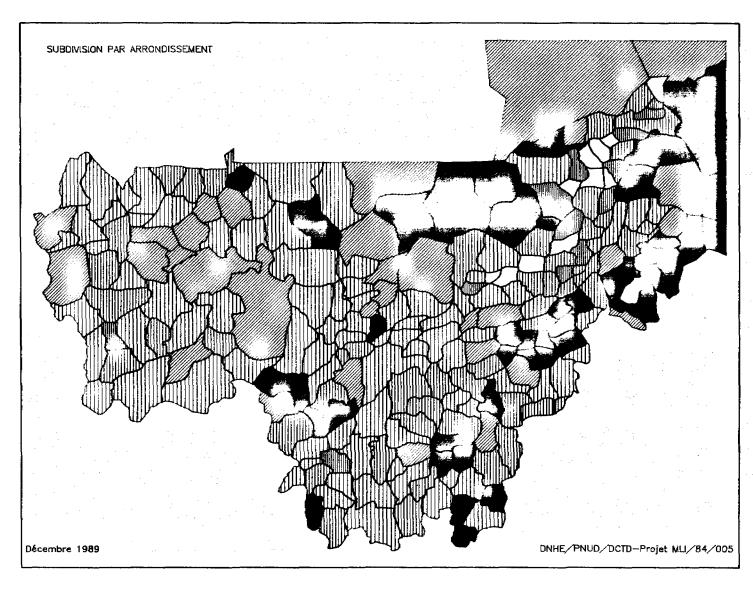
COUT MINIMUM (en F.CFA)			COUT MAXIMUM (en F.CFA)			
Invest. à l'ha	EAU		Invest. à l'ha	EAU		
	₂₀ 3	annuel	a 1 na	m ³	annuel	
140.000	3,3	19.600	1.000.000	23,3	139,800	

Tableau 7.7 - Coûts de l'eau d'irrigation à partir des eaux souterraines

EAUX SOUTER- RAINES (à la sortie de la moto pompe)		COUTS AVEC FORAGE			COUTS SANS FORAGE				
		Pompe 5 m ³ /h		Pompe 10 m ³ /h		Pompe 5 m ³ /h		Pompe 10 m ³ /h	
		3000 h	7000 h	3000 h	7000 h	3000 h	7000 h	3000 h	7000 h
Coûts en F.CFA	MAX.	703	559	908	525	112	82	112	94
	MIN.	70	37	32	22	55	28	30	16
	MOY.	178	98	194	109	71	43	48	34

Les figures 7.2 et 7.3 représentent la répartition géographique des coûts moyens par Arrondissement, abstraction faite des coûts de forage, pour un temps de pompage de 3000 h/an (cas général de l'irrigation) et respectivement pour un débit de 5 m³/h (Figure 7.2) et de 10 m³/h (Figure 7.3).


On observe que pour ce temps de pompage de 3000 heures/an:


- en valeur moyenne, le coût total de l'eau à la sortie de la pompe reste élevé quelque soit le débit (5 ou 10 m³/h). En fait, cette moyenne résulte de conditions locales très diverses, et pour un débit de 10 m³/h, on peut atteindre par endroits des coûts nettement moins élevés;
- la subvention totale du forage permet de ramener le coût moyen dans des tranches de valeur relativement basse (45 à 70 F.CFA/m³) et de réduire considérablement l'écart entre les valeurs maximales et minimales. Les variations de coût sont, comme on pouvait s'y attendre, liées surtout à celles du forage, notamment au taux de réussite;
- la subvention totale du coût du forage permet d'abaisser le coût du m³ d'eau audessous de 45 F.CFA là où l'on dispose de forages de 10 m³/h et lorsque les ressources en eau de surface pérennes ne sont pas disponibles.

SCHEMA DIRECTEUR DES RESSOURCES EN EAU DU MALI

7.2

Figure

COÛT DU m3 d'EAU (POMPAGE A 5 m3/h,3000 h/an) HORS COÛT DU FORAGE

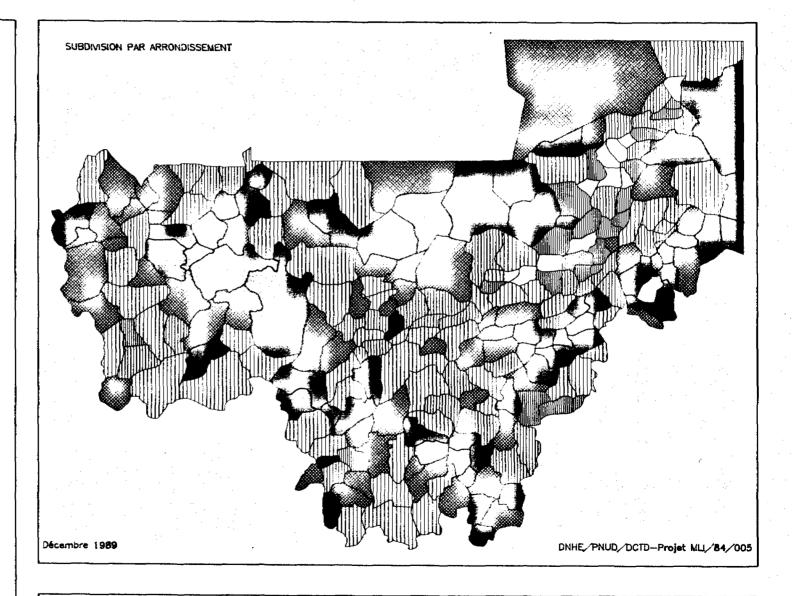
moins

moins de 35

de

de 35 à 40

de 40 à 45


de 45 à 50

plus de 50

données insuffisantes

19MA : 30001038

Figure 7.3

COÛT DU m3 d'EAU (POMPAGE A 10 m3/h,3000 h/an) HORS COÛT DU FORAGE

b) Rentabilité de l'irrigation

Plusieurs estimations des coûts limites de l'eau d'irrigation ont été faites pour diverses cultures [SDM/ECO/1] [7-11]. Elles concordent sur les points suivants :

- le coût limite de l'eau pour le sorgho à haut rendement est de l'ordre de 15 F.CFA/m³;
- pour les produits maraîchers, le coût limite est au plus de 50 F.CFA/m³ environ, mis à part l'oignon pour lequel le coût limite pourrait avoisiner 80 F.CFA/m³ sous réserve d'un marché suffisant pour absorber une production élevée.

Un système combinant maraîchage, élevage, plantations et cultures fourragères pourrait atteindre, dans des conditions favorables, le seuil de rentabilité grâce à l'utilisation de l'exhaure par traction animale [7-12]. Mais, les profits financiers tirés de l'irrigation ne permettront pas de couvrir les frais ngagés par l'utilisation des eaux souterraines aux seules fins agricoles.

Il faudra donc recourir à des subventions, notamment pour les investissements initiaux (forages), et laisser aux agriculteurs le soin d'assurer eux-mêmes l'amenée de l'eau à leurs parcelles, sous réserve toutefois que le forage soit exécuté à proximité de celles-ci à défaut de quoi il faudra aussi subventionner l'amenée de l'eau en tête des parcelles.

Dans ces conditions, le coût financier de l'eau pour l'agriculteur, à la parcelle, sera voisin du coût hors forage estimé au sous-chapitre précédent.

Si l'on admet que, sous réserve de conditions favorables du marché, le coût limite de l'eau d'irrigation pour le maraîchage se situe autour de 50 F.CFA/m³, il sera possible de justifier financièrement, vis-à-vis du paysan, une telle irrigation seulement si le forage atteint 10 m³/h et est totalement subventionné. Le coût moyen de l'eau sera alors de : 48 F.CFA/m³ pour 3.000 heures de pompage par campagne.

Ce n'est que dans des cas particuliers liés aux conditions locales que le forage pourra ne pas être subventionné.

7.5. AUTRES UTILISATIONS DE L'EAU

Les utilisations de l'eau autres que pour l'alimentation des populations, l'hydraulique pastorale et l'irrigation sont d'une part l'aquaculture et la pisciculture et d'autre part les utilisations de type industriel, artisanal et touristique.

Il existe très peu d'informations sur ces domaines d'utilisation et il n'est ici possible que de mentionner les projets connus, sans pouvoir évaluer les besoins futurs correspondants, ni, à fortiori, apprécier la rentabilité de l'utilisation des eaux souterraines et des eaux de surface.

On peut cependant rappeler que l'aquaculture peut constituer, sous certaines conditions à préciser par des études particulières, une activité rentable et contribuer à l'élévation quantitative et qualitative du niveau de sécurité alimentaire.

7.5.1. Pisciculture

La pisciculture peut utiliser les eaux de surface non pérennes et les eaux souterraines. Le Plan 1987-91 [7-15] prévoit la réalisation des 2 projets suivants dans le cadre du "noyau dur" (projets dont le financement est acquis):

- développement de la pisciculture au Mali avec un financement prévu de 145 millions de F.CFA (Organisation de l'Unité Africaine) sur la période 1987-89 : actuellement un projet de développement piscicole en 4º Région est en cours de préparation pour 101 millions de F.CFA. Il consiste à élever des poissons dans des mares naturelles et artificielles créées par des emprunts de terre et alimentées par les eaux de surface, mais également par des forages équipés de pompes solaires ;
- développement de la pisciculture et rationalisation de la pêche au Mali avec un financement prévu de 560 millions de F.CFA (PNUD) sur la période 1987-91, comportant la création de stations de formation et d'alevinage.

Dans la "réserve de projets", figurent les projets suivants :

- développement de la pisciculture dans les mares en 6e Région (Tombouctou), avec un coût prévisionnel de 80 millions de F.CFA;
- développement de la pisciculture au Mali (suite du projet correspondant du noyau dur) avec un coût prévisionnel de 145 millions de F.CFA.

En outre, l'ORSTOM effectue une étude des ressources piscicoles et de la pêche artisanale dans le delta du Niger.

Ces projets s'inscrivent sur l'axe prioritaire d'intervention "Intensifier la production halieutique" (Axe n° 3).

Il est impossible au stade actuel d'évaluer les besoins en eaux souterraines ou superficielles correspondant à la réalisation de ces projets. On cherchera à exploiter d'abord les ressources en eau de surface pérenne pour des raisons de coût; d'autant que les marchés de consommation se trouvent en général près des fleuves ou des rivières.

7.5.2. Mines, industrie, artisanat, tourisme

Pour ces activités, la continuité de la disponibilité en eau implique pratiquement le recours à des ressources pérennes, c'est à dire aux fleuves et aux rivières ou aux eaux souterraines. En général, les industries sont implantées dans ou à proximité des villes, souvent elles-même situées près des rivières. Il n'en est évidemment pas de même des mines et de l'artisanat.

Il existe actuellement peu d'industries alimentées à partir des eaux souterraines. Ce sont essentiellement [HDG/NTL/19]:

- à BAMAKO et dans son voisinage :

usine ITEMA (Industrie Textile du Mali): 1.500 m³/j
 usine BRAMALI (Brasseries du Mali): 350 "

- à KOUTIALA : égrénage du coton et huilerie: 700 "

- à BAGOE : exploitation d'or : non déterminé

- à KALANA : exploitation d'or : non déterminé

En outre, sont en cours les projets suivants inclus dans le noyau dur du Plan pour le secteur de l'industrie et de l'artisanat :

- ligne de crédit pour la promotion des petites et moyennes entreprises et de l'artisanat (1.200 millions de F.CFA du Fonds International pour le Développement Agricole-FAO),
- aide au développement des petites et moyennes entreprises ou industries et des entreprises artisanales (450 millions de F.CFA du FED).

Ces deux projets seraient à rapprocher du projet A5 proposé au Chapitre 9.

Dans la réserve de projets, figurent les projets suivants dont la réalisation nécessiterait la mise en valeur de nouvelles ressources en eau (ne relevant pas nécessairement du Schéma Directeur):

- Sous-secteur des mines et de la géologie

Exploitation des gisements de fer 20.000 : 20.000 millions de F.CFA
Extraction et traitement de l'or à KALANA : 5.000 "
Projet d'eau minérale : 2.420 "
Mise en valeur des gisements de bauxite Ouest-Mali : 100 "

- Sous-secteur de l'industrie et de l'artisant

Programme régional d'amélioration des cuirs et peaux bruts : 15.340 "
Promotion et assistance aux artisans des 6e et 7e Régions : 85 "
Troisième sucrerie (BANKOUMANA) : 39.405 "

- Réhabilitation des PME et PMI : 480 "

7.6. CONCLUSIONS ET RECOMMANDATIONS

7.6.1. Conclusions

a) Irrigation

L'analyse de la situation actuelle et des potentialités de l'irrigation à l'horizon 2001 ainsi que des contraintes en jeu dans ce secteur, conduit aux conclusions suivantes :

- dans tous les cas, les conditions préalables à toute réalisation de projet sont, d'une part l'adhésion d'une proportion significative des villageois et sa participation active à l'aménagement et à l'exploitation du périmètre, d'autre part, l'existence d'un marché suffisamment proche, stable et rémunérateur pour l'écoulement des produits du périmètre non destinés à l'auto-consommation;
- les eaux de surface pérennes, abondantes au Mali, ont déjà permis la réalisation de nombreux aménagements d'irrigation concentrés le long des principaux axes fluviaux qui permettent de couvrir environ 10 % de la consommation vivrière du Mali. Cependant, les conditions d'exploitation, les contraintes hydrologiques, sociales, institutionnelles etéconomiques rendent ces investis sements importants non rentables s'ils ne sont pas subventionnés. Il y aurait donc lieu, avant de pour suivre, de revoir les hypothèses concernant les options et priorités d'investis sements définies en 1984 et ce dans le cadre du projet A10 proposé au Chapitre 9;
- bien qu'offrant des possibilités limitées de mise en valeur agricole, les eaux de surface non pérennes et les eaux souterraines présentent l'avantage important d'être mobilisables presque partout et de permettre ainsi un aménagement plus équilibré du territoire dans le cadre d'une approche globale de terroir;
- les eaux de surface non pérennes peuvent dans certains cas permettre d'atteindre des coûts du m³ d'eau très bas, justifiant notamment l'irrigation de céréales, à condition que les travaux soient réalisés grâce à une forte participation de main d'oeuvre locale (HIMO). Mais les sites qui se prêtent à de tels aménagements n'ont pas jusqu'à présent fait l'objet d'une prospection systématique (Fiches de projet A7 et A8, Chapitre 9);
- les techniques de conservation des eaux et des sols présentent les mêmes avantages (faible coût) et peuvent être mises en oeuvre avec succès en de très nombreux sites, à condition cependant de mener auparavant des actions de sensibilisation et de démonstration dont la réussite n'est envisageable que sur le long terme (Fiche de projet A8, Chapitre 9);
- l'exploitation des eaux souterraines pour l'irrigation conduit, sauf exception, à des coûts totaux (y compris amortissement du forage) supérieurs aux seuils de rentabilité, nécessitant une subvention totale du coût du forage. Même dans ces conditions, le prix de l'eau ne devient acceptable que si le forage atteint un débit de 10 m³/h et si l'irrigation est dirigée soit vers le maraîchage, soit vers l'exploitation de fermes familiales (maraîchage, céréales irriguées, bois, embouche);
- en raison de la diversité des conditions locales, une étude de faisabilité détaillée, couvrant avec précision les aspects sociaux, sera nécessaire car ces données font encore souvent défaut. L'un des objectifs des fiches de projet A8, A9 et A10 est de combler cette lacune.

b) Autres utilisations

Il est envisageable d'utiliser les eaux souterraines pour les installations minières situées loin des ressources en eaux de surface pérennes, ce qui est généralement le cas (exploitation de mines d'or notamment) et pour les industries. En général, le coût du pompage ne représentera qu'une faible part des frais d'exploitation. Pour l'artisanat en revanche (tannerie, poterie, etc), il sera en général nécessaire de se raccorder à un réseau d'adduction d'eau pour des raisons de coût.

7.6.2. Recommandations

a) Recommandations générales

Compte tenu des conclusions qui viennent d'être dégagées ainsi que des contraintes en jeu, les recommandations suivantes peuvent être formulées :

- la stratégie en matière d'irrigation (voir détail au Chapitre 8) devra concilier la rentabilité économique et le développement social (répartition équitable de investissements, ralentissement de l'exode rural). Pour un même résultatau plan social, on cherchera donc à optimiser le coût des aménagements correspondants;
- la mise en oeuvre d'une telle stratégie devra s'appuyer sur une meilleure connaissance pratique des conditions d'exploitation (techniques, économiques, sociales), notamment pour le réalisation des petits périmètres irrigués villageois à partir d'eaux de surface non pérennes ou d'eaux souterraines, ce qui nécessitera de réaliser des projets pilotes afin de fonder sur leurs résultats des actions ultérieures de plus grande ampleur (voir Chapitre 9);
- en raison du grand nombre d'ouvrages existants (forages en particulier), on donnera la priorité aux études de réhabilitation ou d'utilisation des ouvrages existants ayant les plus gros débits;
- pour la réalisation de nouveaux forages, on visera systématiquement, sur la base de l'expérience acquise en matière d'hydrogéologie, un débit d'au moins 10 m³/h;
- la nature, les caractéristiques et le nombre d'ouvrages et de périmètres à réaliser au cours de cette période dépendra principalement de la demande réelle et de l'adhésion des villageois.

b) Propositions de type institutionnel

Compte tenu de la politique nationale actuelle de développement à la base, du nombre considérable et de la grande dispersion des aménagements hydroagricoles à réhabiliter et à créer, il sera absolument nécessaire :

- de déterminer avec précision les fonctions et responsabilités des multiples intervenants dans le cadre d'un document de politique sectorielle,
- d'actualiser le Code domanial et foncier du Mali,
- de renforcer les Services Techniques de l'Etat (DNGR et DNHE notamment) sur le plan de la formation et des moyens de conception, de suivi et de planification, et sur celui de la déconcentration et de la décentralisation (Fiches de projet A1, A7 et A10, Chapitre 9),

- d'améliorer et de consolider la concertation entre ces Services, notamment dans le cadre du Comité Consultatif de l'Eau qui devra être le passage obligé de tout projet de mise en valeur hydroagricole,
- d'aider à l'émergence et au maintien de bureaux d'études et d'entreprises privées au niveau national et régional,
- d'institutionaliser les relations entre l'Administration et les ONG, entre les Services Techniques et les Chambres d'Agriculture, sur une base de mutuelle coopération et confiance, notamment au niveau des Comités régionaux et locaux de développement.

c) Proposition de projets et programmes d'irrigation

- * En ce qui concerne les eaux de surface pérennes, la DNGR propose dans son rapport [7-2] qu'après l'achèvement des projets en cours ou en voie de demarrage (1) (financés actuellement pour 40 milliards de F.CFA), on mette en oeuvre le programme suivant :
- poursuite de la réhabilitation des périmètres existants sur 18.000 ha dont 15.000 ha sur l'Office du Niger;
- mise en oeuvre de 15 nouveaux projets d'irrigation à partir du fleuve Niger totalisant 95,000 ha dont 28,500 ha pour l'extension Sahel de l'Office du Niger, 20,600 ha à partir du seuil de Toba et 34,300 ha à partir du seuil de Djenné.

L'ensemble de ces projets est en cours d'étude (certains sont au stade de la recherche de financement) et représente un investissement de 209 milliards de F.CFA réparti sur les deux prochains Plans quinquennaux. Ceci nécessite une augmentation sensible du rythme d'investissement et de réalisation par rapport au Plan actuel.

Ce programme paraît très ambitieux et, si certains projets sont suffisamment avancés pour être inscrits dans le noyau dur du Plan 1992-1996, les autres devront faire l'objet d'une réévaluation dans le cadre du Schéma Directeur Sectoriel proposé par la fiche de projet A10 au Chapitre 9 pour l'utilisation des ressources en eau de surface pérenne à des fins agricoles.

- * En ce qui concerne les eaux de surface non pérennes, le Schéma Directeur propose d'agir sur deux aspects:
- la réalisation d'aménagements pilotes tels que les micro et petits barrages, les digues filtrantes, les barrages souterrains, le surcreusement de mares et les diguettes d'épandage de crue : il s'agira de tester les différents types d'ouvrages en grandeur réelle, tout en formant le personnel technique (Fiches de projets A7 et A11, Chapitre 9);
- la connaissance des ressources: elle consistera d'une part en un inventaire et une étude systématiques des ouvrages existants et de leur impact, d'autre part en la mise en place d'un réseau national de mesures hydrologiques pour l'étude détaillée de bassins versants représentatifs des conditions hydro-climatiques du Mali (Fiche de projet A8, Chapitre 9).

⁽¹⁾ Ces projets concernent : la réhabilitation de 20.700 ha dont 14.000 sur l'Office du Niger, et la création de 39.000 ha dont 27.800 sur le Système du lac Faguibine et 10.500 ha dans la zone lacustre.

Au niveau de la programmation sur la période du Schéma Directeur, les projets pilotes devront être exécutés dès le début du plan quinquennal 1992-1996 et déboucher sur une proposition de programmes régionaux de réalisation d'ouvrages et de création de périmètres irrigués. A titre indicatif, le Schéma Directeur propose, à partir de 1994, un programme sur 7 ans, comportant deux volets (Fiche de Programme B17, Chapitre 9):

- la réhabilitation de 120 ouvrages existants d'un coût moyen de 2 millions de F.CFA par ouvrage et avec études préalables, pour un montant global de 250 millions de F.CFA (études + travaux),
- la réalisation d'une quarantaine de petits barrages en zone soudano-sahélienne, de 360 aménagements de bassins versants par système de diguettes (épandage de crue notamment) en zone sahélienne et de 80 aménagements de bas-fonds par diguettes en zone soudanienne.

L'ensemble de ce programme devrait permettre la réhabilitation et la mise en valeur de plus de 10.000 hectares irrigués pur un coût total estimé à 4,2 milliards de F.CFA soit un coût moyen de 420.000 F.CFA par hectare.

* En ce qui concerne les eaux souterraines, on se propose d'opérer de la même manière que pour les eaux de surface non pérennes en donnant tout d'abord la priorité à la collecte des données et à l'expérimentation en vraie grandeur avant de programmer des réalisations régionales de grande envergure.

Le Schéma Directeur propose donc (Fiche de projet A9) une première phase d'étude sur 3 ans des diverses conditions de mise en valeur des eaux souterraines pour l'irrigation comportant :

- des enquêtes détaillées sur l'irrigation actuelle, le maraîchage et le marché des produits,
- des expérimentations, sur une trentaine de villages représentatifs, des différents types d'exhaure (manuelle, animale, motorisée, solaire) sur différents type d'ouvrages captant les eaux souterraines (puisards et puits traditionnels, puits modernes et forages) et offrant diverses gammes de débits exploitables; on testera également différentes méthodes et techniques d'irrigation.

Ce projet de 350 millions de F.CFA devra collaborer étroitement avec les projets existants ou programmés, notamment le projet PNUD/OPS MLI/85/006 et déboucher sur une planification sectorielle de la mise en valeur des eaux souterraines pour l'irrigation.

Dans l'immédiat, le Schéma Directeur propose une programmation sur 7 ans (1994-2001) qui n'a qu'une valeur indicative (Fiche de programme B 18, Chapitre 9).

Cette programmation se fixe un objectif raisonnable fondé sur une évaluation des contraintes majeures. L'expérience d'autres pays sahéliens [7-10] montre que la fraction de la population villageoise prête à s'engager activement dans l'irrigation est de 20 % environ et que la superficie irrigable par habitant ne peut dépasser 1 are (10 ares pour une famille de 10 personnes) en raison de l'intérêt prioritaire accordé par les ruraux aux cultures pluviales en hivernage.

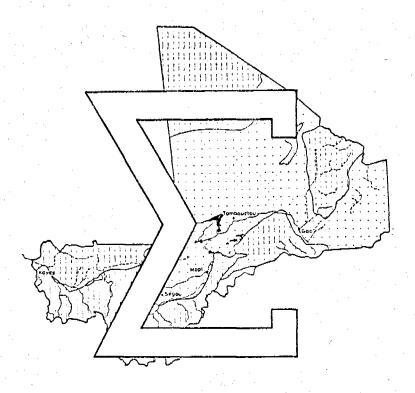
De ces contraintes, il résulte que la superficie des petits périmètres irrigués villageois ne dépassera pas un hectare par tranche de 500 ruraux [SDM/IRG/1].

Ainsi pour une population rurale de 5,6 millions en 2001, la superficie maximale des PPIV serait de 11.000 ha environ pour l'ensemble du pays. Le nombre de villages et centres ruraux étant d'environ 10.000 et à raison d'un périmètre par village, la taille moyenne d'un PPIV sera donc de 1,1 hectare.

Comme il est peu probable que chaque village malien puisse se doter d'un PPIV au cours de la période couverte par le Schéma Directeur, on a estimé qu'environ 1/4 des villages aura été équipé d'ici 2001. La superficie totale irriguée sera alors de 2.500 ha pour environ 2.300 villages.

Parmi ces petits périmètres villageois, certains pourront être alimentés par le même système d'alimentation en eau que celui qui sera mis en place dans le cadre du programme d'adductions d'eau sommaires sur les centres ruraux et semi-urbains, ce qui abaissera le coût des investissements.

Il est proposé deux types d'aménagements selon la taille des localités et le moyen d'exhaure, les points d'eau existant déjà ou bien étant subventionnés :


- les micro-périmètres seront alimentés par des pompes à motricité humaine pouvant fournir 30 m³/j pour irriguer 1/2 hectare en moyenne. Ce type d'aménagement sera réalisé dans les plus petits villages (moins de 1.000 habitants). Le coût moyen d'investissement sera de 500.000 F.CFA (coût de la pompe essentiellement);
- les petits périmètres irrigués de 1 à 5 hectares concerneront les villages de 1.000 à 2.000 habitants pour les périmètres de moins de 2 ha et pour ceux de plus de 2 hectares et jusqu'à 5 hectares les centres ruraux et semi-urbains. Dans le premier cas, on installera essentiellement des pompes à traction animale pouvant fournir 60 à 120 m³/j et dans le second cas des pompes solaires ou à moteur pouvant fournir 150 à 300 m³/j. Les coûts unitaires des PPIV seront fonction essentiellement de l'équipement choisi et se situeront entre 1 et 7 millions de F.CFA en moyenne (pompe à traction animale ou à moteur, les installations solaires étant subventionnées).

En première approximation, la programmation 1994-2001 proposée au Chapitre 9 (Fiche B 18) par le Schéma Directeur pourrait porter sur un total de 2.320 localités de différentes tailles, 2.500 hectares irrigués et un investissement global de 3,5 milliards de F.CFA

CHAPITRE 7

Références bibliographiques hors projet

- [7-1] Projet interrégional PNUD/Banque Mondiale INT/82/001 SCET AGRI-Options et investissements prioritaires dans le domaine de l'irrigation (niveau préliminaire) - Rapport final sur le Mali, Juin 1985
- [7-2] Contribution à la définition d'une politique nationale dans le domaine de l'hydraulique agricole DNGR/FAC, Novembre 1989
- [7-3] Direction Nationale des Statistiques et de l'Informatique Enquête de conjoncture, 1986-87
- [7-4] FAO Revue du secteur agricole du Mali, 1987
- [7-5] BILLERET J. (CEES) Le pompage au Mali. Situation au 15-02-88
- [7-6] BURGEAP Programme régional d'utilisation de l'énergie solaire photovoltaïque dans les pays du CILSS, 87
- [7-7] Séminaire sur les systèmes d'approvisionnement en eau potable Abidjan, 1986 Communication du Mali
- [7-8] Le sahel en lutte contre la désertification : fiches d'expériences au Mali-par R.M. ROCHETTE et autres CILSS, Juin 1988
- [7-9] Etude de faisabilité de la création de petits périmètres irrigués AGRER,
 Mai 1985
- [7-10] Etude d'une alternative de mise en valeur de petits périmètres irrigués-C. DUHEM - Novembre 1985
- [7-11] Etude des perspectives d'exploitation des eaux souterraines pour la création de petits périmètres irrigués M. VERDIER, Février 1989
- [7-12] Groundwater and rural development in subsaharian Africa-BRGM/CIRAD/GERSAR, Septembre 1985
- [7-13] Projet Mali Nord-Est FAO/II Rapport de préparation N° 83/86 AF/MLI 11, Juin 1986
- [7-14] Les ressources terrestres du Mali USAID TAMS, 1983
- [7-15] Plan quinquennal de développement économique et social 1987-1991 Vol. 1: diagnostic de la situation socio-économique et grandes orientations, Février 1988

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 8

POLITIQUE ET STRATEGIES

TABLE DES MATIERES

TEXT		
8.1.	POLITIQUE DE L'EAU	1
8.2.	STRATEGIE D'ENSEMBLE	2 2 4
8.3.	STRATEGIE DE L'ALIMENTATION EN EAU ET DE L'ASSAINISSEMENT	(
8.4.	STRATEGIE DE L'HYDRAULIQUE PASTORALE	. 3
8.5.	STRATEGIE DE L'HYDRAULIQUE AGRICOLE	6
8.6.	COORDINATION DES STRATEGIES SECTORIELLES 1	7
8.7.	ALTERNATIVES POSSIBLES AUX STRATEGIES PROPOSEES 1	8
8.8.	PRIORITES DES INVESTISSEMENTS ET LEUR PLACE DANS LA PLANIFICATION 1	9
BIBL	OGRAPHIE 2	1
TABL.	EAUX	
8.1.	Caractéristiques de la stratégie d'ensemble de développement du Secteur Eau 8 et	9
8.2.	Inscription des priorités dans les Plans quinquennaux 1992-1996 et	Λ

POLITIQUE ET STRATEGIES

Les chapitres précédents ont examiné la situation actuelle et les possibilités d'utilisation des eaux de surface et souterraines dans les domaines de l'approvisionnement en eau potable, de l'hydraulique pastorale, de l'irrigation et des autres usages.

On a observé notamment que les ressources en eau étaient globalement suffisantes pour développer les diverses utilisations de l'eau. Mais des contraintes techniques, sociales, financières, institutionnelles et organisationnelles limitent une utilisation optimale des investissements. Des propositions sectorielles ont été formulées qu'il y a lieu, à présent, de situer par rapport à la définition d'une politique nationale cohérente de l'eau à conduire d'ici à l'an 2001 et de stratégies propres à permettre sa mise en oeuvre.

8.1. POLITIQUE DE L'EAU

Comme il a été rappelé au Chapitre 1, le Plan 1987-1991 a retenu les deux objectifs fondamentaux suivants: "atteindre l'autosuffisance et la sécurité alimentaire" et "lutter contre la sécheresse et la désertification". Le Secteur de l'Eau tel que défini au Chapitre 1 est appelé à répondre directement au second de ces objectifs fondamentaux et à participer au premier. Parmi les trois objectifs stratégiques complémentaires du Plan, le Secteur de l'Eau doit contribuer a "couvrir les besoins de base des populations (et du cheptel)", notamment "les besoins en eau".

Ces objectifs du Plan 1987-1991 définissent en fait des objectifs à long terme car ils ne sauraient être pleinement atteints au cours d'un seul Plan quinquennal. De plus, ils répondent à des besoins fondamentaux du pays et toute politique raisonnable à l'avenir ne peut que les maintenir parmi ses priorités.

Ces orientations impliquent que la politique nationale, et en particulier la politique de l'eau, concilie deux tendances :

- l'une, réaliste, visant à orienter le développement vers des réalisations concrètes et économiquement rentables pour le pays au moins à moyen terme et, si possible, attrayantes pour des opérateurs économiques privés;
- l'autre, volontariste, visant à appuyer des actions dont la rentabilité économique n'est envisagée qu'à long terme ou qui se justifient par leur impact social (souci d'équité entre Régions, entre groupes sociaux ou entre individus, ralentissement de l'exode rural, amélioration de l'environnement, etc...).

La politique nationale de l'eau doit donc viser deux objectifs spécifiques :

- un objectif économique: contribuer, en ce qui concerne le Secteur de l'Eau, au développement d'activités agricoles (irrigation, jardinage), de l'élevage, éventuellement d'activités industrielles et artisanales, et par là même contribuer au maintien ou à la création d'emplois (y compris pour la construction et la maintenance des ouvrages hydrauliques);

- un objectif social: améliorer les conditions de vie de l'ensemble de la population malienne en assurant au plus grand nombre - en milieu rural particulièrement - un meilleur accès à l'eau et à l'assainissement et en veillant à une répartition équitable de l'effort de développement entre Régions et entre groupes sociaux, en faveur des femmes notamment.

De ces deux objectifs, aucun n'est subordonné à l'autre. Le développement du Secteur impliquera donc une progression simultanée sur les deux axes ainsi définis vers une planification cohérente et une coordination nécessaire de tous les acteurs du développement.

Reste à préciser quelles stratégies propres au Secteur de l'Eau peuvent le mieux contribuer à faire progresser la situation, selon ces orientations générales, d'ici à l'an 2001.

En tout état de cause, ces stratégies devront tenir compte :

- des conditions institutionnelles, techniques, sociales et économiques particulières ou spécifiques du Secteur de l'Eau au Mali et de ses sous-secteurs,
- des moyens disponibles et de leurs limites (y compris celles des financements extérieurs),
- de l'orientation générale libérale prise par le Gouvernement malien puisque, comme dans bien d'autres pays, l'Etat entend maintenant limiter son intervention directe dans l'économie (tout en remplissant son rôle de planificateur et de créateur des infrastructures de base) et se borner à créer dans la mesure du possible les conditions du libre jeu des initiatives de base et privées tout en gardant la possibilité de mener des actions d'orientation ou d'incitation si elles se justifient par des avantages sociaux ou par le souci d'induire un développement à long terme.

8.2. STRATEGIE D'ENSEMBLE

L'équilibre entre l'économique et le social constituera la caractéristique fondamentale de la stratégie proposée. Ce trait majeur apparaîtra non seulement dans la stratégie d'ensemble du Secteur de l'Eau, mais aussi, selon leurs caractéristiques propres, dans les sous-secteurs de l'approvisionnement en eau potable et de l'assainissement, de l'hydraulique pastorale et agricole.

8.2.1. Approche actuelle

Les options politiques du Plan sont clairement définies et auraient dû se traduire en une stratégie cohérente et explicite.

En fait, la stratégie a plutôt consisté, jusqu'à présent, à saisir les occasions de financement et à faire progresser le niveau d'équipement du pays (en déployant parfois des efforts considérables, comme dans le domaine de l'hydraulique villageoise) par des programmes, des projets et des mesures ad hoc.

En particulier, l'analyse de la situation actuelle a mis en lumière certains points qui, pour la définition des actions à venir, doivent retenir particulièrement l'attention:

- a) Les actions à mener dans le Secteur de l'Eau (qui relève de divers secteurs ou sous-secteurs de l'économie, tels qu'ils figurent au Plan voir Chapitre 1) n'ont été définies qu'en termes généraux [8-1], aussi les projets proposés par les Agences de Coopération et Organismes Internationaux (y compris les ONG) ne s'intégraient-ils pas obligatoirement dans un plan d'ensemble puisque la planification du secteur n'existait pas.
- b) De plus, le souci de l'équilibre entre Régions, en matière d'investissement et plus généralement d'effort de développement, n'a pas toujours été considéré comme primordial. Les ressources en eau les plus faciles d'accès et les moins coûteuses ont ainsi été privilégiées, notamment pour l'irrigation à partir des fleuves, sans que la rentabilité des aménagements soit d'ailleurs toujours atteinte.
- c) Le contexte institutionnel du Secteur Eau, du fait de la multiplicité des utilisations possibles de l'eau et des types de ressources en eau, est d'une grande complexité. La conséquence de cette situation a été, inévitablement, une insuffisance de coordination et de cohérence des actions menées par ces multiples intervenants. Cette insuffisance est par ailleurs aggravée par l'absence d'un cadre de références techniques et socio-économiques et d'une planification détaillée en rapport desquels chaque institution et chaque action auraient trouvé leur place et établi leur cohérence.
- d) Aujourd'hui, il devient évident pour tous que le développement doit s'appuyer sur la participation communautaires traduite par les initiatives de base et et sur le secteur privé. Cette orientation répond d'abord à la nécessité de prise en charge par les bénéficiaires de leur propre développement, mais aussi au souci de désengagement de l'Etat. Elle correspond à un Axe Prioritaire d'Intervention du Plan 1987-1991 ("Aider à l'organisation de l'économie rurale") et d'un Domaine d'Intervention Privilégié ("Sensibilisation et mobilisation du monde rural"). Une telle intervention est, par nature, délicate et ambigüe : en fait les initiatives de base, voire l'adhésion effective des paysans à une organisation collective, sont encore trop rares, limitées par l'insuffisance de dialogue entre techniciens et populations et par le manque d'information des utilisateurs et des bénéficiaires. Sur ce plan, beaucoup de projets n'ont pas véritablement réussi surtout faute d'une participation active de leurs bénéficiaires, mais aussi à cause du caractère souvent trop dirigiste de ces projets qui ne répondaient pas toujours aux souhaits exprimés, voire aux besoins réels, des usagers.
- e) Le cadre juridique du Secteur de l'Eau (Régime des Eaux) n'a été élaboré que récemment avec l'approbation officielle de ses dispositions (Loi 90-17 AN/RM du 27 Février 1990), mais ses modalités pratiques d'application restent à définir et à mettre en oeuvre.
- f) Le projet de constitution d'un Fonds National de l'Eau propre à aider au financement du développement du Secteur au bénéfice des collectivités et du secteur privé a été proposé depuis longtemps [SDM/ECO/2], mais n'a pas encore abouti. Par ailleurs, le crédit rural et l'épargne sont actuellement insuffisamment développés.
- g) D'une manière générale, les actions entreprises dont certaines très importantes (grands périmètres d'irrigation, campagnes de forages, équipement des villages en pompes solaires ou manuelles,...), ont souvent perdu de leur impact après leur achèvement faute de mesures d'accompagnement suffisantes (enquêtes préliminaires, participation des bénéficiaires aux actions, sensibilisation et formation, mise en place de structures sûres d'entretien et de crédit, etc...). Ainsi, les causes de succès ou d'échec ont été multiples et fortement interdépendantes.

8.2.2. Stratégie d'ensemble proposée

La stratégie d'ensemble à mettre en œuvre ne pourra être applicable et efficace que si sont remplies certaines conditions, à expliciter en premier lieu.

a) Conditions de mise en oeuvre d'une stratégie d'ensemble

La mise en oeuvre de la stratégie fondée sur le Schéma Directeur nécessite non seulement que ce Schéma, revu et corrigé selon les recommandations de la Conférence Nationale sur le Secteur Eau de Juin 1990, reçoive l'approbation du Gouvernement, mais que celui-ci s'engage positivement dans sa réalisation notamment par des mesures institutionnelles, juridiques et financières précisées ci-après.

La participation de l'aide internationale et la coordination de ses diverses composantes sont indispensables pour que la stratégie proposée porte ses fruits.

La concertation nationale et internationale esquissée dans le cadre des Ateliers de la DIEPA, mais véritablement inaugurée par la Conférence Nationale de l'Eau, devra se poursuivre périodiquement, ne serait-ce que pour confronter les résultats de cette stratégie et y apporter les ajustements nécessaires.

Comme il est nécessaire de connaître le plus rapidement possible, après cette première concertation et en tout cas durant la préparation du prochain Plan, les intentions des bailleurs de fonds potentiels quantà leur participation au financement des programmes, compte tenu des nécessités de coordination et d'harmonisation de leurs interventions, une Table ronde de bailleurs de fonds (1) devra être organisée sur la base de la présente version finale du Schéma Directeur, le plus tôt possible après son approbation officielle par le Gouvernement malien.

Au niveau national, il sera nécessaire que soit instituée une Cellule de Planification qui soit un organisme spécifique de pilotage et le passage obligé de toutes les actions relevant du Schéma Directeur. Cette cellule aura pour tâches :

- de coordonner les actions,
- d'évaluer les résultats,
- de proposer les dispositions conjoncturelles propres à éviter les freins à la progression,
- d'adapter ou d'ajuster les dispositions et les prévisions du Schéma Directeur à la mesure des résultats acquis,
- d'établir et de maintenir une concertation entre les intervenants au niveau national (administrations, ONG et privés) ainsi qu'avec les bailleurs de fonds participant au financement des actions.

⁽¹⁾ A cet effet, des premiers contacts ont eu lieu entre des représentants du PNUD, du DCTD, de la Banque Mondiale, de la BOAD et du FAC pour financer ou participer, dès le début de 1991, à l'élaboration du dossier stratégique et technique de programmation à soumettre aux bailleurs de fonds pour cette table ronde qui pourrait se tenir vers le mois d'Octobre 1991.

Cet organisme pourrait avoir le statut d'une Sous-Commission Nationale de l'Eau, à créer au sein de la Commission Nationale de Planification des Mines, de l'Energie, de l'Eau, de l'Industrie et de l'Artisanat. Pour son fonctionnement, cette sous-commission devra s'appuyer sur un Comité Technique qui prendrait le relais, avec des attributions plus précises et accrues, de l'actuel Comité Consultatif de l'Eau (voir Chapitre 2).

b) Caractéristiques de la stratégie d'ensemble

La stratégie proposée ci-après se caractérise par un pragmatisme concerté. Elle consiste à passer le plus vite possible à l'action en acceptant le risque d'échecs, mais en créant les conditions d'environnement les plus favorables par la mobilisation de tous les acteurs du développement et par la coordination de leurs activités.

Une telle stratégie ne doit pas être séquentielle, car les actions doivent être menées de front et autant que possible au même rythme. En cas de difficulté dans tel ou tel domaine, il y aura lieu de prendre des dispositions particulières pour y remédier afin de ne pas retarder la progression d'ensemble.

La stratégie d'ensemble doit être mise en oeuvre selon quelques grands axes de progression récapitulés au tableau 8.1 qui tous concourent au même principe de base, à savoir l'approche globale du Secteur Eau.

Cette approche est un facteur capital de la stratégie d'ensemble. Elle consiste à traiter tous les problèmes du Secteur Eau, conjointement et complémentairement, en intégrant tous les besoins réels à satisfaire : eau potable, eau domestique, eau pour l'assainissement, eau pour le bétail, eau pour l'irrigation, eau pour le banco, eau pour l'artisanat ou autres usages (bosquets et pisciculture, par exemple). Pour ce faire, il y aura lieu, avant tout, d'identifier et de quantifier ces besoins avec les populations concernées qui en feront la demande, demande que l'Administration devra susciter et encourager. Il faudra ensuite que les populations choisissent, avec l'aide informelle de l'Administration, les infrastructures et équipements qui seront les plus à-même de répondre à leurs besoins spécifiques sachant qu'ils auront, dans tous les cas, à en supporter les coûts de fonctionnement, d'entretien et de réparation. Ceci implique d'identifier, au niveau de ces populations, les ressources humaines et monétaires existantes permettant d'assurer la pérennité des infrastructures et des équipements et le recouvrement des coûts, celui-ci pouvant être facilité grâce aux revenus générés par ces mêmes équipements.

En ce qui concerne le recouvrement des coûts d'investissement, le problème est plus délicat du fait de la disparité des ressources monétaires des populations (faibles en général). Il ne sera résolu que très progressivement par la création de mécanismes de crédit, par une incitation à l'épargne et par la promotion d'intermédiaires financiers s'appuyant sur le secteur bancaire.

Suivant cette stratégie, on s'orientera probablement vers des solutions technologiques mieux adaptées, et au bout du compte moins coûteuses, et en tout cas, plus accessibles aux utilisateurs. Dans certains cas, il sera plus avantageux de combiner des infrastructures hydrauliques spécialisées (par exemple, puits pour le bétail, forage pour l'eau potable, petit barrage pour l'irrigation), ou, au contraire, de réaliser un ouvrage à usages multiples (par exemple, forage à gros débit alimentant à la fois un réseau d'adduction d'eau potable et un réseau de petite irrigation).

Les axes de progression qui résultent de cette approche globale, définissent en fait le rôle et les responsabilités des différentes catégories d'intervenants du Secteur Eau qui mettront en pratique cette stratégie d'ensemble.

* Rôle et responsabilités de l'Etat

Conformément à sa politique de libéralisation, de décentralisation et de déconcentration, l'Etat doit progressivement modifier son rôle actuel de "fournisseur de services" pour celui de "promoteur du développement".

Pour ce faire, l'Etat devra agir sur 5 axes principaux :

- l'axe "institutionnel et juridique", en adaptant ses structures et la législation du Régime des Eaux à cette nouvelle forme de son intervention, par la décentralisation des Services et la déconcentration de ses personnels, par une meilleure définition du rôle et des attributions de ses Service Techniques et enfin, par la mise en place de procédures effectives de coordination, de concertation et de soutien tant au niveau national que régional et même local, ainsi qu'avec les institutions extérieures (agences d'assistance externe et ONG) et le secteur privé;
- l'axe "économique et financier", en créant un environnement favorable au développement du Secteur Eau par des systèmes adaptés de crédit et d'épargne, par des mesures d'incitation aux initiatives privées et de base et par la constitution d'un Fonds National de l'Eau;
- l'axe "technique", en établissant les règles du jeu et de l'art en matière de développement du Secteur Eau : définition des normes et modalités de conception, d'exécution et de contrôle des actions, définition des droits et obligations des acteurs du Secteur, notamment au moyen des décrets d'application découlant du Code de l'Eau;
- l'axe "ressources humaines", en adaptant les programmes de formation, d'information et de recherche appliquée aux nouveaux besoins du Secteur, notamment avec la mise en place d'agents de développement communautaire dans l'optique de l'approche globale d'aménagement de terroir, et également en matière de technologies adaptées au milieu et aux capacités des bénéficiaires;
- l'axe "planification", en mettant en place, au niveau national et régional, les structures adéquates pour la programmation des actions, leur suivi financier et leur évaluation technique (mesures d'impact), et en dotant ses structures des moyens (informatique notamment) de gestion et de planification.

* Rôle et responsabilités de l'assistance externe

L'assistance externe, outre son rôle de financement et d'appui technique des projets du Gouvernement, peut également jouer un rôle important dans la planification et la coordination et dans la définition et la mise en oeuvre des stratégies adoptées par le Gouvernement en renforçant les actions de l'Etat en ce sens et en acceptant notamment que le Gouvernement s'assure de la cohérence de leur assistance. Ce n'est que grâce à une concertation effective et au respect des règles du jeu définies par l'Administration, notamment en matière de programmation et de normes techniques et financières, que l'apport de l'assistance technique aura le meilleur impact.

* Rôle des bénéficiaires

En milieu rural comme en milieu urbain, en matière d'eau potable comme en matière d'irrigation ou d'élevage, l'adhésion et la participation active des bénéficiaires devront être les préalables à toute réalisation hydraulique.

Cette participation doit avant tout se manifester par une demande clairement exprimée de la communauté. Elle devra sans doute être le plus souvent suscitée par l'Administration elle-même sur la base des enquêtes au cours des quelles serontidentifiés et évalués la volonté, la capacité et les moyens des communautés à assumer leur demande. Les Services Techniques devront ensuite en vérifier la réalité, la validité et l'opportunité et ensuite conseiller la communauté sur les meilleurs moyens de concrétiser cette demande sur les plans technique, organisationnel et financier.

La participation communautaire devra se faire à tous les niveaux du projet (demande, conception, réalisation, maintenance) et se traduire autant que possible par des contrats entre la communautés et les intervenants, que ce soit l'Etat, un projet d'aide extérieure, une ONG ou le secteur privé, contrats dans lesquels seront définis les droits et obligations de chaque partie.

Le critère de base pour établir la validité d'une demande sera, avant tout autre condition, la capacité de la communauté à assurer la pérennité des infrastructures hydrauliques tant sur le plan financier (recouvrement des coûts) que sur celui de l'organisation (comités de gestion). Ceci implique que des enquêtes soient réalisées pour déterminer d'une part le degré de volonté de la communauté à prendre en charge ces infrastructures, d'autre part le niveau de revenu existant ou induit par le projet sur base desquels pourra être établi le partage des coûts et des responsabilités entre l'Etat, les bénéficiaires et les autres intervenants.

D'autres critères seront à prendre en compte :

- l'existence d'équipements hydrauliques sous-utilisés ou non entretenus, la priorité devant être donnée à la réhabilitation de ces infrastructures avant toute nouvelle réalisation,
- la participation effective des femmes à tous les niveaux, qui est un gage de meilleure gestion comme l'ont montré toutes les enquêtes,
- la prise en compte de l'assainissement dans le projet.

* Rôle du secteur privé

Le secteur privé, très peu présent actuellement dans le Secteur Eau, devrait avoir un rôle de plus en plus important à l'avenir dans le développement de ce Secteur en prenant progressivement en charge la fourniture des services assurée pour l'instant en majeure partie par l'Etat.

Pour ce faire, un certain nombre de conditions devront être remplies. Outre les mesures d'incitation financière qui devront être prises par le Gouvernement, un certain nombre de garanties seront nécessaires sur la qualité et le niveau du service fourni, qui devront être compatibles avec les normes techniques d'une part et avec la capacité des bénéficiaires d'en supporter le coût d'autre part.

Tableau 8.1. - Caractéristiques de la stratégie d'ensemble pour le développement du Secteur de l'Eau

		ACTIONS CORRESPONDANTES	
AXE DE PROGRESSION	A. Institutionnelles et juridiques	B. Economiques et C. Techniques financières	D. De formation et d'information
I. Approche globale du Secteur de l'Eau et coordina- tion des actions dans leur ensemble	1. Suivi, coordination et évaluation permanents des actions au niveau national par un organisme de pilotage, en concertation avec les bailleurs de fonds 2. Détermination des modalités d'application du Régime des Eaux	1. Concertation avec bailleurs de fonds, ONG et secteur privé 2. Création et gestion d'un Fonds National de l'Eau céder à l'évalu permanente des 3. Programmation cohérente des investissements 2. Elaboration d'un ment d'orientat générale sur le et modalités te de conception e cution des acti 3. Amélioration de naissances sur sources en eau milieu pour une leure gestion	sur l'existence du Schéma Directeur et ses dispositions principa- les, y compris par les médias ation actions 2. Organisation de réunions périodiques d'informa- tion des acteurs du développement s normes chniques t d'exé- ons s con- les res- et sur le
II.Responsabi- lisation des popula- tions béné- ficiaires	Nise au point de contrats entre l'Etat et les bénéficiaires Déconcentration des organismes publics Passation de contrats de service	1. Mise en place d'un sys tème de crédit d'équi- pement et d'épargne 2. Mise en place de crédits à l'usage des communautés 3. Harmonisation de la participation des bénéficiaires en espèce et en travail (zones homogènes) 1. Conception de p d'équipements a la participation bénéficiaires, vaux d'aménagem l'exploitation 2. Situer les proj le cadre d'amén de terroir	d'associations et de groupements d'utilisa- ent et à teurs et de producteurs (Comités et Conseils de développement)

Tableau 8.1 - (Suite et fin)

		ACTIONS CORRESPONDANTES							
AXB DB PROGRESSION	A -	Institutionnelles et juridiques	В.	Economiques et financières	C	. Techniques	D	. De formation et d'information	
III. Création d'un envi- ronnement favorable au déve- loppement du Secteur	2.	Décentralisation et déconcentration des services administratifs intéressés Coordination locale des Services et harmonisation de leurs approches Hesures incitatives aux initiatives privées et de base	2.	Mise en place de crédits à l'usage d'opérateurs privés prestataires de service Pronotion des circuits commerciaux pour l'écoulement des productions, agricoles et pastorales notamment Pronotion de structures privées d'entretien et de maintenance des infrastructures hydrauliques (contrats)		Recherche des techniques et technologies les plus adaptées Développement de techniques utilisant les compétences et les matériaux locaux		Formation de techniciens, d'artisants ruraux et d'agents de développement communautaire et d'éducation sanitaire Développement de la recherche appliquée.	
IV. Définition des droits et obliga- tions des acteurs du développe- ment	2.	Application du Régime des Baux Etablissement progressif d'une jurisprudence quant à son application Définition du statut juridique des ouvrages hydrauliques	2.	Perception des redevences pour l'exploitation de l'eau (recouvrement des coûts) Contrats d'affermage Contrats d'entretien	2.	Définition contractuelle des normes techniques des ouvrages et de leur contrôle Conseil technique de l'Etat aux bénéficiaires Support des ONG.		Diffusion des disposi- tions juridiques et administratives auprès des responsables de groupements d'utilisa- sateurs et de produc- teurs Information des bénéfi- ciaires sur leurs droit	
		Prise en compte des régimes fonciers et de leurs particularités locales (coutumières) Définitions plus spéci- fiques et application effective du Code doma- nial et foncier [8-4]						et obligations	
des normes d'exécu-		Renforcement institu- tionnel Déconcentration	1.	Poursuite d'enquêtes dans le domaine socio- économique		Définition et homogénéi- sation des normes tech- niques Evaluation de l'impact des infrastructures hy- drauliques sur l'envi- ronnement		Diffusion des normes et de leur mode d'applica- tion Formation aux technique d'évaluation	

* Rôle des ONG

Les ONG, par leur forte présence sur le terrain, ont un rôle important à jouer auprès des communautés en ce qui concerne surtout l'animation, la vulgarisation de technologies adaptées, l'encadrement technique et la formation sur place, plutôt que sur la réalisation de travaux de technicité élevée qu'elles ne sont pas toujours aptes à mener à bien dans les règles de l'art.

La mise en œuvre de cette stratégie implique des actions d'ordres institutionnel, juridique, économique, technique qui sont synthétisées dans le tableau 8.1 et qui dénotent de leur dépendance réciproque et de la nécessité d'avancer simultanément sur les divers axes.

La mise en oeuvre de la stratégie implique également que soit poursuivi et amplifié l'effort d'amélioration des connaissances sur les ressources en eau et sur le milieu, notamment par des enquêtes socio-économiques, et que soient prises les mesures nécessaires à l'exécution, préalable aux réalisations, d'études de faisabilité précises et fiables, fondées sur de telles enquêtes.

L'outil que constitue le Schéma Directeur (et en particulier les stratégies définies ici) est ainsi appelé à se perfectionner en intégrant les suppléments d'information qui proviendront notamment de sa propre mise en oeuvre.

8.3. STRATEGIES DE L'ALIMENTATION EN EAU ET DE L'ASSAINISSEMENT

8.3.1 Approche actuelle

L'approche actuelle a consisté le plus souvent à traiter essentiellement les problèmes d'AEP sans une stratégie globale bien définie [SDM/AEP/6]. Selon les cas, on a privilégié l'une ou l'autre des approches suivantes :

- une approche technique: en hydraulique villageoise surtout, elle a consisté à rechercher le débit maximum dans des ouvrages équipés d'une pompe manuelle dont le débit exploitable maximum est de 1 m³/h. Ceci aura toutefois une conséquence positive car les résultats de cette approche (bonne connaissance des aquifères) permettent de proposer avec certaines garanties des programmes d'adduction d'eau sommaire des centres ruraux et semi-urbains ainsi que des programmes d'irrigation;
- une approche qualitative: elle avait pour but de fournir de l'eau potable à tous, ce que la généralisation des systèmes d'adduction d'eau et des forages tubés en tête devait théoriquement permettre. Pourtant, sauf exception, cet effort d'équipement n'a pas été accompagné d'un effort équivalent d'éducation sanitaire des utilisateurs et de réalisations de structures d'assainissement ce qui explique que les maladies d'origine hydrique continuent d'être la principale cause de morbidité au Mali;
- une approche financière: réaliser le plus grand nombre d'ouvrages standard pour en diminuer le coût est l'optique qui a en général dominé la programmation des campagnes de travaux, avec un succès certain. Mais la mise en place de capacités de gestion, d'entretien et de réparation de ces ouvrages collectifs par les bénéficiaires n'a pas toujours suivi; c'est pourquoi, dans certaines zones, on observe un taux décevant d'utilisation des infrastruction mises en face.

En ce qui concerne de milieu rural notamment, les critères de choix des villages à équiper en priorité ainsi que les normes d'équipement (401/j/hab. et 1 forage pour 200 habitants) n'ont pas toujours pu être respectés. En milieu urbain, le rythme de réalisation des infrastructures hydrauliques n'a pas pu suivre celui de l'important exode rural vers les villes, consécutif à la sécheresse notamment. Ainsi, malgré un énorme effort technique et financier poursuivi sur plus de 10 ans, le taux de couverture des besoins reste décevant: à peine plus d'un tiers des villages équipés et un cinquième de la population rurale et moins de la moitié de la population urbaine desservis [SDM/AEP/6].

Pour la conception des actions à venir, il y a lieu de tenir compte particulièrement des contraintes suivantes mises en lumière par l'analyse de la situation actuelle [8-2]:

- insuffisance de décentralisation et de coordination des activités des différents intervenants dans le sous-secteur,
- difficultés de planification et de gestion du sous-secteur,
- insuffisance de personnels qualifiés au niveau du terrain,
- insuffisance d'information, de responsabilisation et de participation des bénéficiaires des équipements dûe notamment à une méconnaissance des fonctions de l'eau en milieu rural et de l'importance de la distance entre le point d'eau et les habitations,
- insuffisance de normalisation des techniques, des coûts, des tarifs, des moyens d'exhaure et des structures d'entretien,
- absence du secteur privé au niveau régional et local,
- un effort considérable a été déployé pour réaliser des forages sans que soient suffisamment prises en considération leur répartition sur le territoire national, leur débit exploitable et leurs possibilités pratiques d'utilisation: le technique a primé sur le socio-économique où les changements sont, par nature, plus longs à obtenir,
- les actions en faveur du développement de l'assainissement ont été souvent trop ambitieuses et insuffisamment comprises par les populations concernées.

8.3.2. Stratégie proposée

Comme la stratégie d'ensemble, la stratégie à mettre en oeuvre en matière d'approvisionnement en eau potable et d'assainissement doit concilier le réalisme économique et le souci social, en réduisant cependant le plus possible l'intervention directe de l'Etat dans l'économie :

Elle doit pouvoir satisfaire l'objectif d'une couverture durable des besoins de base des populations en eau potable et en assainissement. L'approche stratégique sera différente selon les catégories de localités: le milieu urbain limité aux villes de plus de 10.000 habitants, le milieu rural limité aux villages de moins de 2.000 habitants et le milieu intermédiaire correspondant aux centres ruraux et semi-urbains, de population comprise entre 2.000 et 10.000 habitants.

a) Le milieu urbain

Compte tenu de l'extension rapide des villes, la stratégie consistera à trouver le meilleur équilibre entre le niveau de service en eau potable et en assainissement et le niveau de vie des différentes catégories de population urbaine de manière d'une part à ce que toute la population urbaine bénéfice d'un service à la hauteur de sa capacité à le payer, d'autre part à ce que les systèmes d'adduction d'eau et d'assainissement soient financièrement viables sur le long terme.

Cette stratégie implique un certain nombre d'actions concomittantes :

- * l'acquisition d'une meilleure connaissance socio-économique du milieu urbain et de son évolution prévisible,
- * la privatisation à terme des structures de gestion et d'exploitation des systèmes,
- * l'étude et l'application d'une tarification à "géométrie variable" adaptée au niveau de revenu des utilisateurs et au niveau de service et qui garantisse à la fois la rentabilité financière et l'équité sociale,
- * l'élaboration de plans détaillés et chiffrés de réhabilitation, de création et d'extension des réseaux d'eau potable et d'assainissement, d'accroissement correspondant des capacités de production, de traitement et de stockage, incluant différents scénarii et options, tels que la création de petits réseaux autonomes dans les quartiers les plus excentrés ou la multiplication des bornes fontaines permettant de rapprocher l'eau des consommateurs pour accroître la consommation (et donc baisser les tarifs).

b) Le milieu rural

La stratégie en milieu rural devra permettre d'atteindre deux objectifs essentiels:

- achever, d'ici l'an 2001, l'équipement en points d'eau modernes de la grande majorité des villages selon la norme transitoire minimale adoptée à l'issue du 3è Atelier de la DIEPA, soit 20 l/j/hab. ou 1 point d'eau moderne par tranche de 400 hab., étant entendu qu'une partie des villages de moins de 400 hab (jusqu'à 200) seront équipés, mais sous condition de leur capacité de prise en charge des coûts d'entretien et de réparation des équipements;
- achever, d'ici l'an 2001, la prise en charge totale par les communautés rurales de tous les volets de l'hydraulique villageoise.

Ces objectifs stratégiques ne pourront être atteints que si, à terme, certaines actions et conditions déjà citées dans la stratégie d'ensemble, sont réalisées mais qui, en ce qui concerne plus particulièrement l'hydraulique villageoise, peuvent se résumer ainsi :

* une rédéfinition du rôle de l'Etat qui doit se traduire par son désengagement de la réalisation de projets au bénéfice de la promotion du développement par la sensibilisation, l'animation, la formation et l'information, le conseil, le suivi et le contrôle, toutes actions qui impliquent une décentralisation des structures administratives et techniques, une déconcentration des centres de décision, une coordination à tous les niveaux et des mesures d'incitation financière au crédit et à l'épargne;

- * une adhésion et une participation accrues des villageois et des villageoises à la conception, aux choix technologiques, à la réalisation et à la gestion de leurs infrastructures hydrauliques et d'assainissement, notamment en ce qui concerne le choix des infrastructures et des équipements, les modalités de maintenance et le recouvrement des coûts y afférant;
- * une limitation rigoureuse du nombre de marques de pompes installées au Mali et leur distribution homogène au niveau régional,
- * une participation progressive et de plus en plus étendue du secteur privé à la réalisation des projets décidés par les communautés villageoises avec l'aide de l'Administration (et des ONG) pouvant se situer au niveau du conseil technique, de l'encadrement de la construction d'ouvrages, des équipements et de leur maintenance dans le cadre de contrats spécifiques.

c) Le milieu intermédiaire

Une stratégie particulière est proposée pour les localités de taille intermédiaire (2.000 à 10.000 hab) qui consiste à progresser simultanément selon trois axes stratégiques complémentaires :

- * l'équipement de tous les centres ruraux et semi-urbains au Mali avec un système sommaire d'adduction d'eau et d'assainissement (latrines améliorées) adapté aux besoins de la localité et à la capacité des habitants d'assumer, avec l'aide de l'Administration (à définir), la gestion du système tant sur le plan organisationnel que financier;
- * la valorisation, chaque fois que possible, des surplus de production d'eau pour des activités rentables (irrigation, industrie, artisanat, piscultures, bosquets,...);
- * la participation, ici également, du secteur privé à la construction des systèmes et, à terme, la prise en charge, par affermage, du système.

8.4. STRATEGIE DE L'HYDRAULIQUE PASTORALE

8.4.1. Approche actuelle

En matière d'élevage, la politique actuelle n'est plus axée, comme par le passé, sur l'augmentation des effectifs de bétail. Elle est plutôt orientée vers l'exploitation rationnelle des ressources fourragères associées aux points d'eau, vers l'amélioration de la productivité du cheptel et vers la promotion d'association d'éleveurs, l'Etat cherchant à laisser à ces associations la responsabilité des investissements pastoraux [SDM/HPL/1].

Mais, comme dans les autres sous-secteurs de l'eau, la réalisation des points d'eau pastoraux (souvent utilisés aussi pour les autres besoins des villages quand il s'agissait de puits ou de forages) a été déterminée essentiellement par les occasions de financement sans que les implantations correspondent à une exploitation rationnelle des pâturages. Ainsi certaines parties du pays sont-elles bien pourvues en points d'eau pastoraux (Kayes, Pays Dogon) alors que d'autres, dont le potentiel fourrager est important, en ont un nombre insuffisant (ouest du delta intérieur, est du pays, nord de Niono, certaines zones de la Région de Sikasso).

Cette hétérogénéité de répartition est dûe en particulier :

- à l'absence d'une politique cohérente de l'hydraulique pastorale,
- à un défaut de concertation entre les différents services administratifs à l'oeuvre dans le secteur [SDM/HPL/1],
- à une connaissance insuffisante des conditions locales de l'élevage, transhumant en particulier, et des besoins réels des éleveurs [SDM/HPL/1 et SDM/SOC/5].
- à l'insuffisance du contexte juridique de l'élevage et notamment :
 - absence d'un statut juridique des ouvrages d'hydraulique pastorale définissant les droits et obligations de l'Etat et des usagers,
 - absence de décrets d'application du Code domanial et foncier spécifiques à l'élevage, notamment en ce qui a trait à la définition, la délimitation et l'appropriation de l'espace pastoral dans les plans locaux et régionaux d'aménagement du territoire,
 - . absence de définition spécifique applicable aux associations pastorales dans la loi N° 88-62/AN-RM du 10 juin 1988 régissant le mouvement coopératif au Mali.

8.4.2. Stratégie proposée

Les ressources fourragères du Mali sont largement sous-exploitées, en particulier dans les zones de nomadisme et de transhumance où le facteur limitant essentiel est la disponibilité en points d'eau.

De plus, dans les zones à forte densité de bétail et où cette densité a fortement augmenté récemment en raison de la sécheresse (3e Région : Sikasso et 5e Région : Mopti), le réseau de points d'eau est localement insuffisant.

Une stratégie peut ainsi être définie en vue d'améliorer, en fonction des caractéristiques régionales, l'équipement du pays en points d'eau pastoraux. Sa mise en oeuvre devra avoir pour effet d'harmoniser les disponibilités en eau d'abreuvement dans l'ensemble du territoire, d'ouvrir des possibilités d'exploitation de ressources fourragères sous-utilisées et, par là-même, d'augmenter raisonnablement la production animale, bovine notamment.

Cette stratégie sera limitée au domaine de l'hydraulique pastorale, mais devra s'intégrer à la politique du Secteur de l'Elevage.

En effet, les actions à mener dans le domaine de l'hydraulique pastorale ne constituent qu'un élément à insérer dans une politique globale de l'élevage qui dépasse largement le cadre du Schéma Directeur. Elle doit prendre notamment en compte les perspectives d'évolution du marché du bétail et de la viande, tant au plan intérieur qu'à l'exportation ainsi que les tendances à la sédentarisation des nomades et à l'intégration de l'élevage à l'agriculture, les possibilités de développement de l'embouche, etc...

Cette politique peut aller dans le sens d'une limitation des effectifs de bétail avec une modulation éventuelle selon les espèces.

La stratégie dans le domaine de l'hydraulique pastorale est donc conditionnelle: elle sera mise en oeuvre sous réserve de son degré de compatibilité avec la politique nationale de l'élevage. Cependant, comme on pourra l'observer, les premières actions qu'elle implique (notamment l'acquisition d'une meilleure connaissance des systèmes d'élevage) dépendent peu de la politique d'élevage retenue. De plus, au moins à court terme et en zone sahélienne surtout, elle vise moins à accroître les ressources animales qu'à en sécuriser l'exploitation. Elle répond ainsi à un souci de sécurité alimentaire et de maintien des populations sur leurs terroirs qui sont des orientations qui ne semblent pas devoir être remises en cause.

La stratégie proposée se définit donc ainsi:

- * Définir les conditions de mise en oeuvre d'une politique cohérente de l'hydraulique pastorale (Fiche de projet A6, chapitre 9) dans le cadre d'un Schéma Directeur Sectoriel de l'Elevage, définissant notamment le rôle des intervenants, la coordination des actions au niveau national et régional, les normes d'exécution, d'évaluation et de suivi de ces actions et le contexte juridique dans lequel elles doivent s'inscrire;
- * Avant toute création de nouveaux points d'eau pastoraux, il sera nécessaire de réaliser des enquêtes portant sur toutes les contraintes en jeu : techniques, économiques, juridiques, sociales définies au Chapitre 6. En particulier, au plan zootechnique, les enquêtes devront permettre d'évaluer la densité animale et la valeur des pâturages en vue d'établir le maillage de points d'eau à réaliser, compte tenu des points d'eau existants et des normes en la matière;
- * Comme pour les ouvrages et équipements d'hydraulique villageoise, la condition préalable pour toute réalisation hydraulique est qu'elle réponde à une demande et un besoin réels des bénéficiaires et obtienne leur adhésion et leur participation effectives à la conception, à la réalisation et à l'entretien, concrétisées par des dispositions contractuelles.
- * Parallèlement aux réalisations, les éleveurs et les responsables d'association ou de groupement d'éleveurs suivront une formation et bénéficieront d'un encadrement sur le terrain. En particulier, un thème essentiel à vulgariser est celui de l'exploitation centripète des pâturages par rapport au point d'eau, et non centrifuge comme elle est généralement pratiquée, un autre étant la maintenance et la gestion des points d'eau.
- * Les réalisations elles-mêmes consisteront à :
- assurer une meilleure exploitation des pâturages sahéliens et sahariens sous-utilisés par manque de points d'eau en vue d'y réhabiliter l'élevage, bovin notamment, et de freiner le transfert du bétail vers le Sud (Fiche de programme B17, Chapitre 9),
- compléter le réseau de points d'eau dans les zones à forte densité animale (lère Région : Kayes Sud, 3e Région : Sikasso et 5e Région : Mopti) (*Fiche de programme B18, Chapitres 9*).

8.5. STRATEGIE DE L'HYDRAULIQUE AGRICOLE

8.5.1. Approche actuelle

L'approche actuelle a mis surtout l'accent sur l'exploitation des eaux de surface pérennes (fleuves et rivières). Comme dans d'autres pays sahéliens, on a cherché d'abord à réaliser de grands périmètres, souvent en maîtrise totale de l'eau, gérés par des organismes régionaux de développement qui étaient appelés à contribuer, par la riziculture surtout, à l'autosuffisance céréalière du pays.

Les difficultés de gestion et le coût élevé de tels aménagements dont une grande partie est à réhabiliter à grands frais, amènent aujourd'hui à considérer plus largement des systèmes de dimensions plus modestes, le plus souvent en submersion contrôlée, et plus économiques. Mais les sécheresses enregistrées depuis le début de la décennie 70 ont fait baisser les niveaux de crue et compromis le succès de la submersion contrôlée.

Depuis quelques années, on s'est orienté vers la réalisation de petits périmètres irrigués villageois (PPIV) en maîtrise totale de l'eau, tout en continuant d'ailleurs de privilégier, pour des raisons de coût, l'utilisation des eaux de surface pérennes.

L'approche a été également fonction des occasions de financement et des études de factibilité disponibles. Elle a été en outre basée essentiellement sur une rentabilité économique qui n'a que très rarement été atteinte. Ainsi, la plus grande partie du pays où l'irrigation n'est possible qu'à partir d'eaux superficielles non pérennes ou d'eaux souterraines, n'a bénéficié que d'un nombre limité d'aménagements à des fins d'irrigation.

Plus particulièrement, les contraintes suivantes liées à la situation actuelle doivent être prises en compte pour les actions à venir :

- l'étude des aspects socio-économiques de l'irrigation est très insuffisante [8-4];
- la production agricole irriguée est, semble-t-il, peu intensive;
- en moyenne, les périmètres existants sont mal entretenus par leurs utilisateurs;
- la commercialisation des produits de l'irrigation (produits maraîchers et fruits notamment) est précaire, aléatoire et, en fait, mal connue.

8.5.2. Stratégie proposée

La stratégie proposée ici se fonde sur les principes suivants :

- * Débattre de la proposition de politique nationale récemment élaborée par la DNGR [8-4];
- * Concilier le souci de rentabilité économique avec celui du développement social, ce qui peut conduire en particulier à subventionner une partie des coûts de l'eau d'irrigation si la rentabilité financière des aménagements, pour les agriculteurs intéressés, ne peut être atteinte qu'à cette condition (cas fréquent pour exploiter les eaux souterraines). En irrigation à partir d'eaux de surface pérennes, les aménagements de base (barrages, canaux principaux) sont d'ailleurs largement subventionnés;

- * Parvenir à un meilleur équilibre de la répartition régionale des périmètres d'irrigation, actuellement fortement concentrés le long des grands axes fluviaux, en particulier dans la région de Ségou; ce qui revient à consentir et planifier de plus grands efforts d'équipements hydrauliques dans l'arrière pays en ayant plus recours aux eaux de surface non pérennes et aux eaux souterraines;
- * S'appuyer sur une meilleure connaissance pratique des conditions locales (techniques, sociales, économiques et foncières) de réalisation des projets de petits périmètres irrigués villageois et pour ce faire:
- réaliser des projets pilotes afin de baser sur l'expérience ainsi acquise des actions de plus grande ampleur,
- situer ces projets dans un cadre global d'aménagement de terroir [8-4];
- * En raison du grand nombre d'ouvrages existants pour l'exploitation des eaux non pérennes et souterraines (petits barrages, forages), donner la priorité à l'étude des possibilités de réhabilitation ou d'utilisation de ces ouvrages à des fins agricoles;
- * Comme pour l'approvisionnement en eau et l'hydraulique pastorale, n'entreprendre que les projets qui sont le résultat d'une demande et d'un besoin réels des bénéficiaires et obtiennent leur adhésion effective (conception, réalisation et entretien), matérialisée par des dispositions contractuelles. Ce point est particulièrement important dans le cas de l'irrigation qui n'est pas perçue par les intéressés comme un besoin fondamental au même degré que la disponibilité en eau pour la consommation humaine ou l'abreuvement des animaux mais qui correspond plutôt à une volonté d'entreprendre laquelle peut fléchir devant les difficultés. Il y a lieu notamment de tenir compte de la charge de travail dûe aux cultures pluviales auxquelles les agriculteurs accorderont longtemps encore la priorité [SDM/ECO/5];
- * Assurer la formation et l'encadrement des exploitants agricoles tant au niveau de la conception et de la réalisation mais aussi de l'entretien des périmètres, des méthodes de cultures, des intrants, de la production et de la commercialisation;
- * Mettre l'accent sur la recherche appliquée en matière d'aménagements et d'équipements hydrauliques ainsi qu'en matière de conservation des eaux et des sols;
- * Favoriser l'émergence d'initiatives privées par des mesures légales et financières incitatives, règlementant notamment les problèmes fonciers et de crédit;
- * Intégrer d'avantage les femmes aux projets d'irrigation.

8.6. COORDINATION DES STRATEGIES SECTORIELLES

La stratégie d'ensemble (voir § 8.2.2.) est basée sur le principe d'une approche globale du Secteur Eau. Elle correspond de facto à la perception du monde rural qui a l'habitude de considérer l'eau dans sa globalité pour répondre à l'ensemble de ses besoins.

C'est donc cet ensemble de besoins qu'il faut identifier avec les populations tant rurales qu'urbaines, au niveau local tout d'abord, puis régional et enfin national afin que les projets qui en naîtront, prennent en compte et intègrent tous les besoins, sous réserve évidemment des conditions préalables citées auparavant (demande et besoin réels, adhésion et participation des populations, coordination et concertation, mesures juridiques et financières,...).

Au niveau des équipements hydrauliques, on devra tendre à long terme vers une "spécialisation" des ouvrages, mais également, et dans le court terme, créer, chaque fois que possible, des ouvrages à usages multiples afin de valoriser au maximum les ressources en eau et les ouvrages disponibles et abaisser ainsi les coûts d'investissement et les coûts récurrents.

Enfin, la coordination et la concertation devront être une règle d'or dans le cadre d'une planification régionale et intersectorielle afin que les différentes stratégies sectorielles se combinent pour se renforcer mutuellement.

8.7. ALTERNATIVES POSSIBLES AUX STRATEGIES PROPOSEES

- * Une première stratégie alternative est évidemment de poursuivre la démarche actuelle qui souffre d'une insuffisance de planification d'ensemble et de coordination entre les diverses institutions ainsi que d'une définition des règles de gestion du Secteur et d'une participation effective des populations concernées. La poursuite de cette démarche -qui ne répond pas à une stratégie explicite aurait pour effet :
- d'accentuer les déséquilibres, régionaux notamment,
- d'achever de compromettre l'entretien et l'utilisation des ouvrages et équipements existants, généralement donnés aux intéressés, sans qu'ils s'en sentent responsables,
- de décourager finalement les bailleurs de fonds en raison de l'insuffisance ou de la précarité des résultats obtenus et de l'absence de mesures propres à les améliorer.
- * Une autre solution consisterait à cesser d'investir dans de nouveaux équipements et à se contenter de réhabiliter les équipements existants en attendant que des études de base et des actions de formation et de sensibilisation aient créé les conditions d'une participation effective des populations, voire l'émergence d'initiatives spontanées. Cette solution présenterait l'avantage de limiter considérablement les dépenses et de limiter à terme l'intervention directe de l'Etat dans l'économie dans la mesure où les travaux de réhabilitation pourraient se faire sans subvention.

Mais en comptant ainsi sur les seules initiatives de base sans les solliciter, on s'exposerait aux mêmes inconvénients que l'alternative précédente (aggravés sans doute par les inconvénients d'une longue période sans développement).

* Il serait également envisageable de chercher à ne développer l'utilisation des eaux (pour l'irrigation, l'hydraulique pastorale, voire l'approvisionnement en eau potable) que dans les zones et sur les sites où l'exploitation de telles ressources est financièrement rentable sans subvention directe de l'investissement initial. L'appui de l'Etat et des projets se limiterait alors à l'assistance technique, à l'appui institutionnel et à la mise en place de crédits bonifiés. L'avantage de cette solution est de ne laisser émerger que les initiatives financièrement viables appelées ainsi à survivreaux projets et d'éviter les distorsions économiques. Cette alternative aboutirait à une inégalité entre populations dûe aux aléas de leur situation géographique. Acceptable à la rigueur lorsqu'il s'agit d'activités n'intéressant qu'une partie de la population comme l'irrigation, une telle démarche peut difficilement se justifier au plan politique et social quand il s'agit d'un service à caractère public. Elle irait à l'encontre des politiques d'aménagement équilibré du territoire, de protection de l'environnement et de lutte contre la désertification et elle mettrait au second plan les préoccupations sociales qui sont au contraire une priorité du Gouvernement.

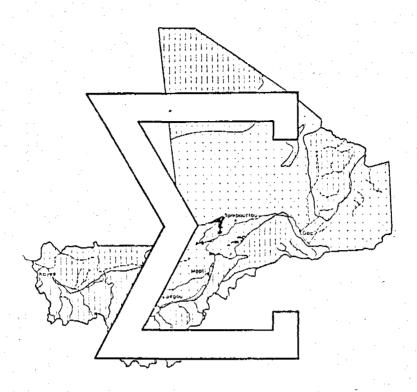
8.8. PRIORITES DES INVESTISSEMENTS ET LEUR PLACE DANS LA PLANIFICATION

La stratégie d'ensemble et les stratégies sectorielles définies ci-avant sont destinées à être suivies au cours des deux Plans 1992-1996 et 1997-2001, compte tenu des moyens financiers disponibles. Il y a donc lieu de préciser comment les priorités définies dans la stratégie s'inscriront dans chacun des prochains Plans.

Le tableau 8.2 résume cette répartition par Plan et par sous-secteurs de l'Eau. Chacun des programmes qui y figurent comprend non seulement les travaux de réalisation mais les études et les mesures d'accompagnement correspondantes. Il ne s'agit ici que d'une définition générale. Le détail des programmes figure au Chapitre 9.

Tableau 8.2 -Inscription des priorités dans les Plans quinquennaux 1992-1996 (Plan 1) et 1997-2001 (Plan 2)

Secteur	Sous- secteur	Plan	Priorités
I EAU POTABLE ET ASSAI- NISSEMENT	1 Hydrauli- que villa- geoise	1	Poursuite et réalisation des trois quarts envi- ron du programme d'équipement de la totalité des villages (y compris réhabilitation de forages équipés de pompes à motricité humaine)
		2	Achèvement du programme d'actions en cours (en particulier : exécution de puits) pour qu'à la fin du Plan, tous les villages du pays soient équipés de points d'eau potable
d'ear	2 Adduction d'eau som-	1	Etudes régionales avant études de projets et exé cution de 40 % environ du programme d'équipement des centres non pourvus actuellement d'une AES
	maire (1)	2	Exécution du reste du programme pour qu'à l'issue du Plan, la plupart des centres soient équipés
	3 Hydrauli-	1	Réhabilitation, extension des systèmes existants, amélioration de la gestion, tarification
	que urbai- ne	2	Augmentation des capacités de production, cou- verture totale des besoins, privatisation
	4 Assainis- sement ur- bain et	1	Education sanitaire, généralisation de la cons- truction d'ouvrages adaptés aux besoins des localités selon les règles d'hygiène requises
	rural	2	Poursuite de l'éducation sanitaire


(1) Sous réserve d'un financement acquis suffisant, le programme se réalise par Région (groupement géographique des chantiers). En cas de financement insuffisant, priorité aux Centres les plus peuplés.

Secteur	Sous- secteur	Plan	Priorités
II HYDRAULIQUE PASTORALE	· · · · · · · · · · · · · · · · · · ·	1	Programme de mise en valeur des pâturages saha- riens et sahéliens
PASTORALE		2	Programme de création de points d'eau complémen- taires dans les Régions à forte densité animale
III IRRIGATION	1 Eaux de surface pérennes	1	Etudes de faisabilité (Schémas directeurs régionaux) de mise en valeur agricole (travaux de réhabilitations et de nouvelles créations de périmètres) à partir des eaux de surface péren- nes
		2	Poursuite des travaux de réhabilitation et création de périmètres irrigués
	2 Eaux de surface non péren- nes et eaux sou- terraines (PPIV)	1	 Etude et réalisation de projets pilotes d'irrigation à partir des eaux souterraines et des eaux de surface non pérennes Enquête dans les projets existants, du point de vue technique et économique Le cas échéant, réalisation d'une première tranche de petits périmètres villageois en fin de Plan si les conditions techniques et socioéconomiques requises sont réunies (projets bien étudiés) et particulièrement favorables (notamment : réhabilitation d'aménagement utilisant des eaux de surface non pérennes)
		2	Réalisation de 2.800 petits périmètres villa- geois, sous réserve d'une demande réelle et sur la base des acquis du Plan précédent, représen- tant environ 12.300 ha irrigués.

CHAPITRE 8

Références bibliographiques hors projet

- [8-1] Plan quinquennal de développement économique et social 1987-1991 Vol 1 : Le diagnostic de la situation socio-économique et les grandes orientations-1988
- [8-2] Ministère du Plan, Ministère de la Santé Publique et des Affaires Sociales, Ministère de l'Industrie, de l'Hydraulique et de l'Energie avec l'assistance de l'Agence Canadienne pour le Développement International (ACDI) et du PNUD-Décennie Internationale de l'Eau Potable et de l'Assainissement (DIEPA) 3e Atelier National sur la planification du secteur eau potable et assainissement-1988
- [8-3] Amélioration de l'approvisionnement en eau par bornes fontaines et de la santé de la population au niveau des quatre villes de KOULIKORO, KATI, KITA, SEGOU Direction Nationale de l'Hydraulique et de l'Energie (DNHE) et Kreditanstalt für Wiederaufbau (KfW) 1987
- [8-4] Ministère de l'Agriculture Direction Nationale du Génie Rural: Contribution à la définition d'une politique nationale dans le domaine de l'hydraulique agricole (avec la participation du Ministère Français de la Coopération et du Développement) Novembre 1989.

SCHEMA DIRECTEUR DE MISE EN VALEUR DES RESSOURCES EN EAU DU MALI

CHAPITRE 9

PROGRAMMATION 1992-2001

TABLE DES MATIERES

T	'n.	Y	7	F
	Ľ1.	^		Ľ

9.1.	HYDRAUL 9.1.1. 9.1.2.	IQUE VILLAGEOISE	1
9.2.	ADDUCTI 9.2.1. 9.2.2.	ONS D'EAU SOMMAIRES	4
9.3.	HYDRAUL	IQUE URBAINE	8
9.4.	ASSAINI	SSEMENT	9
9.5.	HYDRAUL 9.5.1. 9.5.2.	IQUE PASTORALE Programmes régionaux Projets nationaux	11
9.6.	HYDRAUL 9.6.1. 9.6.2.	IQUE AGRICOLE Irrigation à partir des eaux de surface pérennes Irrigation à partir des autres ressources en eau 9.6.2.1. Projets pilotes 9.6.2.2. Programmes régionaux	12 14 15
9.7.	VUE D'E	NSEMBLE ET RECAPITULATION	19
	9.8.1. 9.8.2. 9.8.3. 9.8.4.	IONS ET RECOMMANDATIONS	23 24 25 25
		s de fiches de projet	
	A1	Appui à la planification et au développement régional du Secteur Eau (1992-1995)	30
	A2 -	Appui à la gestion des systèmes d'alimentation en eau, au développement de l'assainissement et aux initiatives de base en milieu rural (1991-1994)	32
	A3 -	Réactualisation du Schéma Directeur sectoriel d'AEP urbaine et appui à la gestion des systèmes d'eau potable en milieu urbain (1992-1993)	34
	A4 -	Diagnostic du Secteur de l'Assainissement en milieu urbain et programme d'actions à long terme (1992-1993)	36

	A5	-	Appui à la création d'entreprises publiques, para- publiques ou privées d'études, d'équipements et de travaux hydrauliques et d'assainissement (1992-1996)	38
	A6	-	Appui à l'hydraulique pastorale (1992-1993)	40
	A7	-	Conception et construction de six ouvrages types d'aménagement des eaux de surface non pérennes (1991-1994)	42
	A8	-	Etude des possibilités de mise en valeur des ressources en eau de surface non pérenne (1991-1994)	44
	А9	_	Diagnostic et planification sectorielle de l'irrigation à partir des eaux souterraines (1992-1994)	46
	A10	_	Planification de la mise en valeur des ressources en eau de surface pérenne pour le développement de l'hydraulique agricole (1992-1993)	48
	A11	_	Etude intégrée et multisectorielle du delta intérieur du fleuve Niger (1992-1993)	50
	A12	-	Vulgarisation des techniques d'épandage de crue en zone sahélienne (1992-1995)	52
F	xemp	oles	s de fiches de programme	
	B5A		Hydraulique villageoise et assainissement rural au NO de la Région de Mopti (1992-1996)	54
	B12A	۱	Adductions d'eau et assainissement sommaires dans les Centres ruraux et semi-urbains de la Région de Mopti (1992-1996)	56
	B17	-	Aménagements d'hydraulique pastorale en zone sahélienne et saharienne (1992-2001)	58
	B18	-	Aménagements d'hydraulique pastorale dans les zones à forte densité animale des Régions de Sikasso et Mopti (1992-2001)	61
	B20	-	Aménagements d'hydraulique agricole à partir des eaux de surface non pérennes (1994-2001)	63
	B21	_	Aménagements d'hydraulique agricole à partir des eaux souterraines (1994-2001)	66

TABLEAUX

	1000 0001	
9.1.	Coûts d'investissement (estimés) des programmes régionaux 1992-2001 d'hydraulique et d'assainissement villageois	3
9.2.	Coûts d'investissement (estimés) des programmes régionaux 1992-2001 d'adductions d'eau sommaires et d'assainissement rural	7
9.3.	Coûts d'investissement (estimés) des programmes régionaux 1992-2001 d'AEP en milieu urbain	9
9.4.	Conts d'investissement (estimés) des programmes régionaux 1992-2001 d'assainissement en milieux rural et urbain	10
9.5.	Projets d'irrigation à partir des eaux de surface pérennes, à court et moyen termes, proposés par la DNGR	13
9.6.	Coûts moyens actuels et futurs d'investissement à l'hectare irrigué à partir des eaux de surface pérennes	13
9.7.	Coûts d'investissement (estimés) des programmes régionaux 1992-2001 d'irrigation à partir des eaux de surface non pérennes	16
9.8.	Potentiel de création de petits périmètres irrigués villageois	17
9.9.	Répartition des projets nationaux et des programmes régionaux 1992-2001, par année et Plan quinquennal et par sous-secteur	20
9.10	Répartition des investissements des programmes régionaux 1992-2001, par Région, par Plan et par sous-secteur	21
9.11	.Coûts per capita des investissements régionaux 1992-2001	22
9.12	Récapitulatif des projets 1991-1996 proposés par le Schéma Directeur	28
9.13	Récapitulatif des programmes 1992-2001 proposés par le Schéma Directeur	29

CHAPITRE 9

PROGRAMMATION 1992 - 2001

Se basant sur les résultats fournis aux Chapitres 5, 6 et 7 et compte tenu de la politique et des stratégies proposées au Chapitre 8, le présent chapitre propose la réalisation, entre 1992 et 2001, de 12 projets nationaux d'assistance technique et de 21 programmes régionaux dans les différents sous-secteurs de l'eau: Hydraulique villageoise, Adductions d'eau sommaires, Hydraulique urbaine, Assainissement, Hydraulique pastorale et Hydraulique agricole pour un cout total d'investissement de 261 milliards de F.CFA (US\$ 870 millions).

Les modes de calcul des investissements sont indiqués cl-après et des fiches d'identification sommaires pour les 12 projets nationaux (A1 à A2) et pour 6 exemples de programmes régionaux (B5A, B12A, B17, B18, B20, B21) sont joints en fin de chapitre après une récapitulation de l'ensemble des fiches présentées.

On se référa aux tableaux 9.9 et 9.10 qui montrent la répartition des investissements par année, plan quinquennal, Région et sous-secteur.

9.1. HYDRAULIQUE VILLAGEOISE

Le montant des programmes (B1 à B7) et des projets proposés (A2 et A3) est de 74,33 milliards de F.CFA, soit 28,5 % de la programmation 1992-2001. Les 7 programmes proposés peuvent être subdivisés en 14 sous-programmes à raison d'un programme par Région et par Plan, selon le tableau 9.10.

9.1.1. Programmes régionaux

Le tableau 9.1 ci-après donne le détail des calculs qui aboutissent à un montant d'investissement de 72,6 milliards de F.CFA pour couvrir la totalité des besoins en eau des populations villageoises à l'horizon 2001, en se basant sur les normes et critères suivante :

- une consommation de 20 l/j/habitant, soit 1 point d'eau moderne (puits ou forage équipé de pompe à motricité humaine) pour 400 habitants selon la recommandation du 3e Atelier de la DIEPA;
- dans tous les villages, un puits traditionnel communautaire existant réhabilité (approfondi et cuvelé) pour les usages autres que l'eau de consommation;
- un second puits traditionnel amélioré dans 10 % des villages (villages de plus de 1.000 habitants);
- un point d'eau moderne à construire par tranche de 400 habitants. Leur nombre est calculé directement en divisant le nombre d'habitants non desservis en 2001 (par rapport à la situation en 1989) par 400. Ceci est une simplification dans la mesure où près de 22 % de la population rurale vit dans des villages de moins de 400 habitants (voir Tableau 5.1, Chapitre 5) qui ne devraient pas en principe bénéficier d'un point d'eau moderne; cependant, il est admis qu'entre 200 et 400 habitants, et quelquefois en dessous, les villages pourront avoir un point d'eau moderne s'ils ont la capacité d'assurer sa pérennité. Par souci de simplification, on a donc adopté le calcul direct qui en surestimant les quantités d'ouvrages permettra d'équiper de 2 forages des villages de 600 700 habitants, de 3 forages ceux de 1.000 1.100, etc...;

- les Chefs-lieux d'Arrondissement de moins de 2.000 habitants et les villages peuplés de plus de 1.000 habitants qui représentent environ 10 % du total des villages, seront équipés de postes autonomes (voir Chapitre 5) avec un réservoir de 10 m³ maximum sur l'abri de la pompe. A noter que ce système intermédiaire pourrait être également appliqué aux quartiers très excentrés des grandes villes (Bamako notamment) si l'extension du réseau existant vers ces quartiers n'est pas prévue;
- puits traditionnels améliorés, puits modernes et forages seront, chaque fois que possible, exécutés complémentairement dans un même village selon les souhaits des villageois en vue d'une "spécialisation" de leur utilisation (par exemple, 1 forage pour les usages domestiques, 1 forage pour le jardinage et le banco, 1 puits pour le bétail, la lessive) tandis que pour les plus gros villages, on peut prévoir, si le cas se présente, une adduction d'eau sommaire (confer § 9.2) lorsqu'elle peut desservir plusieurs quartiers ou villages proches totalisant plus de 2.000 habitants;
- pour que la participation villageoise soit efficace et réelle et que le choix d'équipement soit réaliste, il est proposé d'introduire une norme financière d'investissement sous forme d'une subvention unique (mais modulable en fonction de la taille du village et de ses revenus. Le tableau 9.1 montre (colonnes 23 et 24) que le coût en investissement du programme 1992-2001 revient à 17.700 F.CFA par habitant desservi soit, par an, 1.770 F.CFA. Cette somme pourrait etre affectée a l'un ou l'autre des équipements proposés sous réserve cependant que les villageois acceptent de financer (ou de continuer à financer) en argent et en nature les compléments nécessaires ainsi que l'entretien des équipements. Une étude en ce sens par un consultant est prévue dans le projet A1 d'appui pour la planification (voir Fiche de projet A1 en fin de Chapitre);
- le coût du m³ d'eau à l'investissement découlant du coût du programme serait de 240 F.CFA équivalent à celui payé en zone urbaine, au seau par seau, et à celui du tableau 5.8 au Chapitre 5;
- les prix unitaires adoptés dans le tableau 9.1 découlent des documents établis précédemment sur la base des coûts moyens actuels et des caractéristiques moyennes des ouvrages (profondeur, taux de réussite, accès). Celles-ci sont éminemment variables selon les conditions hydrogéologiques, mais on a estimé qu'elles s'équilibraient sur l'ensemble du programme;
- pour l'assainissement (voir également ci-après § 9.4), on a adopté une norme arbitraire de 1.000 F.CFA par habitant pour la construction de latrines simples à raison d'une par concession (donc en moyenne pour 10 personnes), soit 10.000 F.CFA par latrine, avec une forte participation villageoise aux travaux (après sensibilisation). Cette norme est très inférieure au coût d'une latrine moderne (200.000 F.CFA), mais constitue une première étape. Elle sera donc revue après l'étude proposée dans la fiche de projet A4.

9.1.2. Projets nationaux

L'amélioration de la planification du Secteur Eau devra être le souci principal de la DNHE puisque 6 % du coût des campagnes de puits, de forages et d'installation de pompes, soit plus de 4 milliards de F.CFA, sont consacrés non seulement aux études de préparation des projets, au suivi et au contrôle des travaux, mais aussi aux campagnes de sensibilisation, d'animation et de formation. La programmation, les études préparatoires ainsi que le suivi et le contrôle des travaux devraient être réalisés, plus qu'aujourd'hui, par les services décentralisés de la DNHE à mettre en place avec l'aide du projet d'appui pour la planification et le développement régional (Fiche de projet A1).

Tablead 9.1 - COUTS D'INVESTISSEMENT [ESTIMES] DES PROGRAMMES REGIONAUX 1992-2001 D'ETERAGLIQUE RT D'ASSAINISSBURNT VILLAGROIS

		OKARE DE cins de 2					POPULATION Acnese 54				NS EN POI					COUTS	(en mil	lions de	F.CPA)				cours uni:	AIRBS (es	a P.CPA)
	ļ			<u>.</u>		1989	ILUGIC VA	20-)1	(i pi	d'eau po (O hab)		PU: TRADIT		POINTS MODE		RANGE		ASSAI-	TCTAL	RTUBES BT	TOTAL PROGRAM-	PER CA	PITA	ñ2
REGION	TOTAL RM 2001	BH T Báni		EGUIPER (1 - 2)	TOTALB	DESSBEVIE (20 1/3/E)	TOTALE	restant à couveir	TOTAUL	20 %	80 % FORAGES	Réhabi-	Cons- truction		forages	Réhabi- litation		NESSE- NENT	PRAVAUI (arroadi)	ivida -dorna ib	MB (arrondi)	fotal	par an	D, BYA
	2001	Nb.	*	(1 - 1)	10100	totale	ĭ	forung	(ibaossa)	TOTACA	LOTIO	LAWRER	11046100	0.000100	Boue. des		11046100	163			ulj				
	1	2	3	1	5	6	7	8	9 (8 - 6)	10(11+12)	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
I. KAPES	1.388	475	24,3	912	155.144	128,000	43,4	829.801	500.300	1.250	250	1.000	100	140	2.500	5.000	80	350	820	9.600	515	10.175	17.800	1.780	245
2. KOULIKORO	1.806	793	40,9	1.013	923.329	530,300	51,4	1,095,481	570.000	1.425	285	1,140	900	180	2.350	5.700	150	600	1.095	11.275	675	11.950	17.800	1.780	245
3. SIKASSO	1.683	776	(6,1	907	986.136	417.000	43,8	1.014.894	660.000	1.500	300	1.200	850	170	3.000	6.000	115.	420	1.015	11.578	895	12.265	17.600	1.760	240
1. SEGOU	2.128	1.174	85,2	954	1.010.563	574.000	56,8	1.152.784	530.000	1.475	295	1.180	1.070	213	2.950	5.900	135	412	1.160	11.840	710	12.550	17.650	1.765	240
5. MOPTI	1.992	715	35,3	1.277	975.099	138.000	14,1	1.040.588	900.000	2.250	450	1.800	1.000	200	4.500	9.000	15	630	1.040	16.385	985	17.370	17.650	1.765	240
6. TOEBOUCTOU	858	108	16,2	560	339.230	45.000	14,6	257.159	220.000	550	110	116	310	67	1.100	2.200	4	154	270	4.125	250	4.375	17.450	1.745	248
7. GAO	343	15	1,1	328	234.520	10.000	4,5	220.596	210,900	525	105	120	170	35	1.050	2.100	3	147	220	3.725	220	3.945	11.650	1.765	240
TOTAUL	16.008	4.057	40,5	5.951	5.157.721	2.042.000	39,6	5.601.405	3.590.000	8.975	1.795	7.180	5.020	1.005	17.350	35.900	502	2.513	5.630	68.520	4.110	72.630	17.700	1.770	240

LEGENDS

- Colonnes I, 5 et 8 = Yoir Ammere 5-A
- Colonnes 2 et 6 = Voir Tableau 5.3 (chapitre 5)
- Colonne 10 = colonne 9 div. par 400 beb./print d'eau moderne
- Colores 11 et 12 = respectivement 20 % et 80 % de col. 10
- Colonce 13 = I puits traditionnel réhabilité pour tous les villages à 0,5.10 F.CPA (col. 1 x 0,5)
- Coloane 14 = 1 puits traditionnel nouveau pour 10 % des villages à 1.10° P.CFA (col. 1 x 10 % E 1)
- Coleane 15 = col. 11 x 10.10 P.CPA/puits (40 m à 250.000 P.CPA/m)

- Colonne 16 = col. 12 x 5.104 F.CFA/forage
- Colonne 17 = ub de poupes par Région (voir Annexe 5-B) x 0.1.10 F.CPA
- Colombe 18 = col. 12 r 0.35.104 F.CFA
- Colonne 19 = col. 8 x 1.000 P.CPA/hab.
- Calcone 20 = Total col. 13 1 19
- Colonne 21 = 6 % de col. 20
- Colonne 22 = Total col. 20 + 21
- Colonne 21 = Coût par habitant non desservi = (col. 4 x 0.5) + (col. 4 x 10 x x 1) + col. 15 + col. 16 + col. 18 + (col. 9 x 10-3) divisé par (colonne 9 x 10-1)
- Colonne 24 = col. 23 divisée par 10 ans [1992-2001]
- Columne 25 = col. 24 divisée par 7.3 (26 1/j/hab x 365 div. par 1.000)

Les campagnes régionales de sensibilisation, d'animation et de formation devront être orientées et contrôlées aux plans national et régional par la DNHE et l'Administration Territoriale dans le cadre du projet d'appui à la gestion des systèmes d'alimentation en eau⁽¹⁾ et aux initiatives de base (Fiche de projet A2).

Les bureaux d'études maliens et les entreprises publiques, parapubliques et privées d'études, d'équipements et de travaux hydrauliques devront participer activement au sous-secteur de l'hydraulique villageoise, mais aussi au sous-secteur des adductions d'eau et des aménagements hydro-agricoles. Un projet d'appui (Fiche de projet A5) est proposé en ce sens.

9.2. ADDUCTIONS D'EAU SOMMAIRES

9.2.1. Programmes régionaux

Ces programmes, récapitulés dans le tableau 9.2 pour un montant total d'investissement de 27 milliards de F.CFA, soit un peu plus de 10 % de la programmation globale (contre près de 30 % pour l'hydraulique villageoise), constituent un nouveau champ d'action proposant d'équiper en systèmes sommaires d'adduction d'eau toutes les localités dont la population en 2001 comptera de 2.000 à 10.000 habitants regroupés sous l'appellation Centre rural (2.000 - 5.000 hab) et Centre semi-urbain (5.000 à 10.000 hab).

Comme pour l'hydraulique villageoise, les 7 programmes régionaux (B8 à B14) pourront être subdivisés en 14 sous-programmes à raison d'un sous-programme par Région et par Plan (Tableau 9.10).

En 1989, le Mali compte 366 Centres ruraux (dont 3 déjà équipés et 1 en cours d'équipement) et 47 Centres semi-urbains (dont 5 équipés et 1 en cours d'équipement). En 2001, il en comptera respectivement 555 et 84, soit un total de 639 dont 10 équipés ou en cours, soit 629 centres restants d'ici 2001 (Annexe 5A).

Ne sont pas compris dans ces chiffres les Chefs-lieux d'Arrondissement (considérés normalement comme des Centres ruraux) dont la population en 2001 restera inférieure à 2.000 habitants (environ une centaine). Pour cette catégorie de localités, le Schéma Directeur propose un système de poste autonome (voir Chapitre 5) inclus dans le coût des programmes d'hydraulique villageoise (§ 9.1). Par contre, sont inclus ici les Chefs-lieux de Cercle de moins de 10.000 habitants bien qu'ils soient considérés comme faisant partie des Centres urbains, et devraient donc, à ce titre, bénéficier en principe d'un système complet d'adduction d'eau potable.

Ces programmes ont été établis et chiffrés en tenant compte des normes et critères suivants :

- la norme de consommation adoptée pour les Centres ruraux et semi-urbains est de 31 l/j/hab (voir Chapitre 5 § 5.2.2) inférieure à la norme actuelle de 40 l/j/hab mais supérieure à la consommation mesurée sur les centres actuellement équipés (20 l/j/hab);

⁽¹⁾ incluant également les adductions d'eau (voir § 9.2).

- les réservoirs sont standardisés à 30 m³ de capacité, mais les longueurs du réseau de distribution sont légèrement augmentées par rapport au tableau 5.8 (Chapitre 5, § 5.4.1) pour rapprocher des consommateurs les bornes fontaines dont le nombre sera augmenté en fonction de l'habitat;
- les conditions hydrogéologiques dans les Centres semi-urbains et rurauxont été prises en compte selon le tableau 5.7 (Chapitre 5, § 5.4.1) dans lequel les Centres sont classés selon 6 catégories regroupées dans le tableau 9.2 selon les deux classes suivantes :
 - . une classe de sites considérés comme favorables (70 % du total) sur lesquels :
 - soit, il existe un ou plusieurs forages de débit supérieur à 10 m³/h (catégorie 1) ou compris entre 5 et 10 m³/h (catégorie 2) ou supérieur à 3 m³/h (catégorie 3) (45 % des Centres);
 - soit, il n'existe pas de forage mais les conditions hydrogéologiques y sont favorables (catégorie 5 : 25 % des Centres, essentiellement dans les aquifères généralisés et les aquifères fissurés de l'Infracambrien).

Sur ces sites, il s'agira soit d'utiliser le ou les forages existants après réalésage pour installation d'une pompe (solaire ou diésel) et d'y effectuer des pompages d'essai, soit d'effectuer une reconnaissance géophysique (légère) pour y implanter de nouveaux forages.

- . une classe de sites considérés comme défavorables (30 % du total) sur lesquels :
 - soit, les forages existants n'ont pas fourni de débits supérieurs à 3 m³/h (catégorie 4 : 12 % des Centres),
 - soit, il n'existe pas de forage et les conditions hydrogéologiques n'y sont pas favorables (catégorie 6: 18 % des Centres essentiellement dans les aquifères du socle et de l'Infracambrien métamorphique).

Sur ces sites, les études d'implantation des forages devront être plus poussées (donc plus chères), le nombre de forages à réaliser pourra être élevé selon le taux de réussite et leur localisation pourra être excentrée par rapport au Centre selon les conditions hydrogéologiques locales, ce qui amènera une augmentation du coût des adductions d'eau par suite des longueurs supplémentaires de conduite.

- les études d'avant-projet ont été évaluées à environ 6 % (1,6 milliard de F.CFA) du coût prévisionnel des adductions et devront s'attacher à adapter les schémas théoriques aux conditions locales (taille et forme du centre, caractéristiques socioéconomiques et conditions hydrogéologiques);
- la même norme de coût d'assainissement que pour l'hydraulique villageoise a été adoptée en première approche (1.000 F.CFA/habitant) bien que dans le cas des Centres il faudrait déjà prévoir les latrines améliorées au coût moyen de 200.000 F.CFA. Ceci devrait faire l'objet d'un financement séparé et en fonction d'une étude sur la perception de cet aspect de la santé par les bénéficiaires (Fiche de projet A4).

Dans le tableau 9.2 ci-après, on notera que :

- l'investissement par habitant se situe autour de 13.000 F.CFA, soit 1.300 F.CFA/an/habitant contre 1.770 F.CFA en hydraulique villageoise;
- le coût du m³ d'eau à l'investissement revient à environ 115 F.CFA contre 240 F.CFA en hydraulique villageoise, soit moitié moins élevé pour une norme de 50% supérieure (31 l/j/hab contre 20 l/j/hab). Par contre, en ce qui concerne le fonctionnement, le prix de revient du m³ d'eau d'une adduction d'eau sommaire se rapproche de celui de l'hydraulique villageoise sans toutefois l'atteindre (voir Tableau 5.8, Chapitre 5).

9.2.2. Projets nationaux

La gestion des adductions d'eau sommaires réalisée actuellement par l'Administration locale avec l'appui de la DNHE est une solution qui s'est imposée à cause du faible nombre de localités ayant un statut de municipalité, donc des services municipaux structurés. Elle ne semble pas pouvoir être généralisée aux nombreuses localités qui seront dotées d'une adduction dans les 12 ans à venir. Une solution faisant intervenir une ou plusieurs compagnies fermières privées ou semi-privées devrait être élaborée le plus tôt possible par un consultant de haut niveau, dans le cadre des projets proposés par les Fiches A2 et A5.

Le financement des adductions d'eau sommaires par la vente de l'eau aux bornes fontaines semble être la seule solution permettant d'assurer une saine gestion financière, même si l'on abaisse le prix de vente pour augmenter la consommation. Le coût du m³ d'eau sera en effet toujours inférieur au prix actuel de vente au seau de 250 F.CFA/m³. Elle devrait permettre aux comités de gestion (ou à la compagnie fermière) de rembourser les prêts investis dans l'équipement bien que, par souci d'équité, l'Etat devrait envisager l'extension aux Centres ruraux et semi-urbains du système de subvention proposé pour les villages au paragraphe 9.1.1 ci-dessus.

Les fiches de projet A1, A2 et A5 décrites au § 9.1.2 s'appliquent également aux adductions d'eau sommaires pour ce qui concerne la planification (A1), la gestion des systèmes d'alimentation en eau (A2) et la participation des entreprises publiques, parapubliques et privées dans ce sous-secteur (A5).

Tableau 9.2 - COUTS D'INVESTISSEMENT (ESTIMES) DES PROGRAMMES REGIONAUM 1992-2001 D'ADDOCTIONS D'EAU SCHAIRES ET D'ASSAINISSEMENT MIRAL

	l .	EES RUEAUX EMI-UEBAINS				CENTRE	S RO	rati	(2.000	à 5.00)0 bab]	}				CENTERS	SEMI-	UESAINS	(5.00	0 ž 10.	000 ha	p1			COUT		COUT		TS UNITA en P.OFA	
		N 2001	2	.000 -	3.000]	seb	3	.000 - 4	.000 b	ab	4.	.000 -	5.000	hab	5	.000 -	7.500	isi	1	.500 -	10.000	hab	TOTAL	COUT ASSAINIS-	TOTAL	COUT ETUDES	TOTAL			· · ·
region	Nb	1 -			i .	PABLE Propa		RABLE De Pofa)		ORABLE PCFA)				ORABLE OFPOPA)				DLABLE Papopa)				CEABLE CFECPA)	D'EAU (10° PCPA)	SEMBAT	TRAVAUI (ARRONDI)	BT SBIVI (env. E 1	PROGENEUR	total	CAPITA Par	B' BAU
	10161	desservir	Кb	Coût	Nb	Soût	Kb	Ceût	Яb	Coût	Nb	Coût	Кb	Coût	Rb	Coît	Кb	Goût	NP	Coût	Rb	Coût	}	het cabical	(in. Letu)	AFEI)	(IA. LOLV.	MG blogies-	an an	PAN
	1	ž	. 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	26	29	30
i. LATES	136	461.630	60	1.920	24	960	16	630	4	172	10	370	5	225	9	387	1	52	5	275	0	C	4.991	462	5,453	337	5.790	12.540	1.254	111
ž. LOULTEGRO	109	364.244	34	1.088	32	1.280.	13	455	6	256	ī	259	-	180	8	244	1	52	4	220	0	C	4.138	364	4.500	280	4.780	13.120	1.512	116
3. SILASSO	129	438.872	(3	1.376	30	1.290	21	735	10	430	6	222	2	90	11	413	1	52	4	229	1	55	4.863	438	5.301	329	5.630	12.830	1,283	113
4. SEGOU	100	325.448	33	1.056	23	920	26	910	2	86	5	185	2	90	ż	8 6	0	į 0	5	275	2	130	3.738	325	4.063	259	4.320	13.270	1.327	117
S. MOPTI	93	290.508	47	1.564	10	400	17	£95	4	172	£	222	3	135	3	129	2	104	1	15	0	ę	3.515	290	3.606	124	2.730	12.840	1.284	113
E. TOMBOBOTOU	25	93.065	4	126	6	240	5	175	2	E 6	1	39	4	180	1	43	ı	52	1	55	0	0	996	93	1.089	81	1.170	12.570	1.257	111
7. GAO	35	120.849	14	448	Б	240	10	250	1	43	1	37	1	45	3	129	0	0	0	t	1	65	1.357	121	1.478	102	1.580	13.070	1.367	116
TOTAUL	629	2.094.736	235	1.520	131	5.240	110	3.650	29	1.247	36	1.332	21	945	37	1.591	6	312	20	1.100	4	260	23.397	2.093	25,490	1.510	27.000	12.890	1.289	114

LEGENDE

Col. 1, 2 = non compris les centres déjà équipés (8) ou en cours d'équipement (2) en 1989

Col. 3, 7, 11, 15 et 19 = Ht de centres où les conditions sont favorables pour une adduction d'eau sonnaire (voir chapitre 5, tabless 5.7)

Col. 5, 9, 13, 17 et 21 = Nb de centres où les conditions ne sont pas favorables pour une adduction d'eat sommaire (voir chapitre 2, tableau 5.7)

Col. 4, 6, 8, 10, 12, 14, 15, 18, 20 et 22 = Couts unitaires forfaitaires estiaés à partir des coûts du tableau 5.8 au chapitre 5

(2 3 à 5 millions de P.CPA selon les conditions)

Col. 24 = colonne 2 x 1.000 F.CPA

Col. 28 = colonne 27 divisée par col. 2

Col. 29 = colonne 28 divisée par 10 ans (1992-2001)

Col. 30 = colonne 28 divisée par 11,315, soit 31 1/j/hab x 365 x 10-3, en m3/an.

9.3. HYDRAULIQUE URBAINE

Compte tenu de l'absence d'informations résentes sur les futurs projets d'hydraulique urbaine, la programmation proposée ici consistera tout d'abord en un projet national (Fiche A3) d'un montant de 320 millions de F.CFA sur deux ans dont l'objectif sera d'une part la réactualisation du Schéma Directeur sectoriel de l'AEP urbaine et d'autre part l'appui à la gestion des systèmes existants et futurs.

Parallèlement, le programme d'investissement proposé a été évalué globalement sur la base des montants investis au cours de la période 1985-1988 (confer 3e Atelier DIEPA), soit de l'ordre de 30 milliards de F.CFA, à raison de 3 milliards par an en moyenne. Il est bien évident que ces montants seront à reconsidérer selon les résultats du projet A3.

C'est pourquoi il n'est pas donné d'exemple de fiche pour le programme régional B15 qui peut être subdivisé soit en 14 sous-programmes (1 par Région et par Plan), soit en sous-programmes par localité ou groupe de localités proches.

La distribution régionale des investissements en hydraulique urbaine montrée par le tableau 9.3 a été établie en première approximation par une répartition des fonds directement proportionnelle à la population urbaine totale prévue en 2001 pour chaque région. Le coût moyen per capita de l'investissement est de l'ordre de 13.000 F.CFA contre 16.000 F.CFA si on ne compte que la population urbaine non desservie (voir Chapitre 5, § 5.5.5). Etant donné que la presque totalité des villes du Mali est déjà équipée d'un système d'adduction d'eau potable plus ou moins complet, les investissements concerneront toute la population urbaine puisqu'ils seront essentiellement affectés à la rénovation ou à la réhabilitation des systèmes, à l'accroissement des capacités de pompage, de traitement et de stockage et à l'extension des réseaux de conduite, des branchements privés et des bornes fontaines afin de couvrir progressivement et selon une planification adéquate les besoins actuels et futurs de toute cette population urbaine.

La bonne gestion des systèmes est l'une des conditions essentielles au développement du sous-secteur AEP; c'est pourquoi il sera nécessaire d'évaluer plus précisément la gestion actuelle des systèmes existants, de déterminer les meilleurs moyens pour assurer leur pérennité (structures de gestion, tarification selon les objectifs financiers) et d'aider les structures qui seront mises en place (publiques, parapubliques ou privées) pour arriver à une gestion efficace de ces systèmes. C'est l'objet de la fiche de projet A3 et en partie de la fiche de projet A5.

Tableau 9.3 - Coûts d'investissement (estimés) des programmes régionaux 1992-2001 d'AEP en milieu urbain

REGIONS	POPULATION U EN 2001	RBAINE	NB VILLES	INVESTISSEMENTS REGIONAUX 1992-
	Nb.	%	(> 10.000 hab)	2001 (10° F.CFA)
1. KAYES	143.516	6,3	6	1,90
2. KOULIKORO(1)	1.455.470	63,0	7	18,90
3. SIKASSO	207.138	9,0	3	2,70
4. SEGOU	233.432	10,0	7	3,00
5. MOPTI	131.669	5,7	3	1,70
6. TOMBOUCTOU	80.483	3,5	4	1,0
7. GAO	58.698	2,5	1	0,8
TOTAUX	2.310.406	100	31	30,0

(1) Y compris Bamako qui représente 57,8 % de la population urbaine du Mali.

9.4. ASSAINISSEMENT

En ce qui concerne les investissements à prévoir dans le domaine de l'assainissement, les informations sur les futurs projets sont incomplètes et le plus souvent irréalistes compte tenu de la situation actuelle de ce sous-secteur (voir chapitre 5 § 5.5.6).

La programmation proposée ici pour un montant global de 17,72 milliards de F.CFA n'est donc qu'une ébauche qui devra être précisée dans le cadre des deux projets d'accompagnement proposés par le Schéma Directeur, soit un volet du projet A2 pour le milieu rural (AEP + Assainissement) et la totalité du projet A4 pour le milieu urbain en vue d'obtenir un diagnostic aussi fiable que possible de la situation et de proposer un programme d'action réaliste dans ce domaine.

La programmation proposée comporte 3 volets :

- un volet "assainissement villageois" incorporé dans l'hydraulique villageoise pour un montant de 5,63 milliards de F.CFA consacrés essentiellement à la sensibilisation, à l'éducation sanitaire et à la mise en oeuvre de technologies simples pouvant être réalisées et gérées par les villageois eux-mêmes,

- un volet "assainissement rural" incorporé aux adductions d'eau sommaires et intéressant les centres ruraux et semi-urbain pour un montant de 2,09 milliards de F.CFA consacrés à des actions de même type qu'en assainissement villageois,
- un volet "assainissement urbain" pour un montant de l'ordre de 10 milliards de F.CFA consacrés à l'éducation sanitaire, aux travaux d'assainissement et à la gestion des infrastructures et répartis régionalement en fonction de la population urbaine prévue en 2001 dans chaque Région (Tableau 9.4). Ce volet assainissement urbain fait l'objet du programme régional B16 pour lequel il n'est pas fourni d'exemple étant donné les incertitudes sur les possibilités et les modalités d'exécution des travaux d'assainissement dans les villes, qui ne pourront être déterminées qu'après l'exécution du projet A4. Comme pour l'hydraulique urbaine, ce programme peut être subdivisé en sous-programmes par Région et Plan ou par localité ou groupe de localités.

Tableau 9.4 - Coûts d'investissements (estimés) des programmes régionaux 1992-2001 d'assainissement en milieux rural et urbain, en millions de F.CFA

	BRATANG	E .	NISSEME Geois(1)		ASSAINISS RURAUX ET			ASSAINISS	BNBNT U	RBAIN	T	OTAUX		COUT
	REGIONS	POPULA-	INVEST	riss.	POPULA-	INVES'	riss.	POPULA- TION TO-	INVEST	riss.	POPULATION	INVEST	riss.	PER CAPITA
		TION TO- TALE 2001	TOTAL	X	TION TO- TALE 2001	TOTAL	*	TION 2001	TOTAL	X	TOTALE 2001	TOTAL	x	(F.CFA)
1.	KAYES	829.803	830	14,7	467.354	460	22,0	143.516	630	6,3	1.440.673	1.920	10,8	1.330
2.	KOULIKORO	1.095.481	1.100	19,6	380.387	360	17,2	(3) 1.455.470	6.300	63,0	2.931.338	7.760	43,8	2.650
3.	SIKASSO	1.014.894	1.010	17,9	449.419	440	21,1	207.138	900	9,0	1.671.451	2.350	13,3	1.400
4.	SRGOU	1.162.784	1.160	20,6	328.291	330	15,8	233.432	1.000	10,0	1.724.507	2.490	14,1	1.450
5.	MOPTI	1.040.588	1.040	18,5	316.113	290	13,9	131.669	570	5,7	1.488.370	1.900	10,7	1.275
6.	TOMBOUCTOU	267.159	270	4,8	98.999	90	4,3	80.483	350	3,5	446.641	710	4,0	1.600
7.	GAO	220.696	220	3,9	120.849	120	5,7	58.698	250	2,5	400.243	590	3,3	1.475
	TOTAUX	5.631.405	5.630	100	2.161.412	2.090	100	2.310.406	10.000	100	10.103.223	17.720	100	1.750

⁽¹⁾ Voir Tableaux 3.1 et 9.1

⁽²⁾ Voir Tableaux 3.1 et 9.2

⁽³⁾ Y compris Bamako.

9.5. HYDRAULIQUE PASTORALE

9.5.1. Programmes régionaux

Les programmes d'hydraulique villageoise, en augmentant sensiblement les quantités globales d'eau mises à la disposition des habitants, permettront également de subvenir aux besoins supplémentaires d'abreuvement du bétail sédentaire. Cependant, le troupeau malien est en voie de reconstitution et sa répartition spatiale a varié. Pour couvrir les besoins supplémentaires en eau du bétail (estimés à 42.000 m³/j) jusqu'en 2001 (voir Chapitre 6), le Schéma Directeur propose deux programmes régionaux (Fiches de programme B17 et B18) couvrant en fait plusieurs Régions et d'un montant global de 8,34 milliards de F.CFA.

Compte tenu des projets en cours, ces deux nouveaux programmes devraient suffire à couvrir 80 % de l'augmentation des besoins (34.000 m³/j sur les 42.000 nécessaires (voir Chapitre 6). Il faudra donc suivre l'évolution du bétail, éventuellement adapter les projets prévus et identifier des programmes supplémentaires pour la deuxième partie du 2e Plan. Le coût de ces programmes supplémentaires (évalué proportionnellement à un coût moyen de 640.000 F.CFA du m³ d'eau mis à disposition par les programmes cidessus) serait de 5,12 milliards de F.CFA.

Le coût total des programmes d'hydraulique pastorale pour couvrir l'ensemble des besoins prévisionnels pendant la durée du Schéma Directeur serait donc de 13,5 milliards de F.CFA, soit 5,2 % du total programmé (voir Tableau 9.9 ci-après).

9.5.2. Projets nationaux

Les études préparatoires ainsi que le suivi des travaux et les actions de sensibilisation, d'animation et de formation des éleveurs bénéficiaires sont inclues dans les programmes ci-dessus où leur coût représente environ 6 % du total, soit 800 millions de F.CFA. Cependant, des enquêtes, des études complémentaires, des projets-pilotes et des actions et mesures d'accompagnement seront nécessaires pour assurer une conception saine, une réalisation techniquement et financièrement efficace et une utilisation correcte des ouvrages réalisés par les programmes d'investissement: la fiche de projet A6 (et en partie la fiche A7) détaille le contenu de ce projet d'appui englobant toutes ces activités d'accompagnement.

9.6. HYDRAULIQUE AGRICOLE

Le Schéma Directeur prévoit d'initier tout d'abord des projets nationaux d'accompagnement et des projets pilotes. En effet, l'irrigation à partir des eaux souterraines est encore peu développée et limitée à quelques micro-périmètres villageois et petits périmètres privés autour des grandes villes; de ce fait, même si l'importance des potentialités ouvre des perspectives très intéressantes, les contraintes qui peuvent limiter leur développement ne sont pas quantifiées et le Schéma Directeur n'est pas en mesure de lever le scepticisme actuel sur la perspective de mettre en valeur le demimillion d'hectares irrigables identifié [SDM/GNL/4]. D'autre part, si l'irrigation à partir des ressources en eau non pérenne a pu avoir un certain développement grâce à l'initiative des villageois et de certains donateurs et ONG, on connaît encore trop peu ces ressources pour proposer des solutions suffisamment fiables pour réduire les contraintes qui ont limité jusqu'à présent une utilisation rentable des investissements. On constate ainsi que la planification du développement est limitée par l'insuffisance de l'expérimentation.

Par contre, pour l'irrigation à partir des eaux de surface pérennes, on dispose, outre l'expérience considérable acquise, d'un grand nombre de projets dont les études de faisabilité sont bien avancées [7.1 et 7.2]. Il est donc plus aisé pour ce type de ressources de programmer les investissements jusqu'en 2001.

Globalement, les investissements des 10 prochaines années pour l'hydraulique agricole correspondant aux différents projets et programmes proposés seront de l'ordre de 103,7 milliards de F.CFA, dont 2,48 (2,5 %) pour 6 projets nationaux (Fiches A7 à A12) et 101,22 (97,5 %) pour les programmes régionaux, ces derniers étant encore consacrés massivement à l'irrigation à partir des eaux de surface pérennes (93,52 milliards de F.CFA contre 7,7 aux autres types de ressources : eaux de surface non pérennes et eaux souterraines).

9.6.1. Irrigation à partir des eaux de surface pérennes

En ce qui a trait aux projets nationaux sur les eaux pérennes, la plupart des études de base ont été réalisées et se poursuivent. Il reste cependant un élément important relativement mal connu qu'il a paru utile d'inclure dans le Schéma Directeur : il s'agit de l'étude du fonctionnement hydraulique du delta intérieur du fleuve Niger dont le rôle tant sur le plan socio-économique qu'environnemental est capital pour le Mali. La fiche de projet All récapitule succintement les objectifs et modalités d'exécution de cette étude.

L'élaboration actuellement en cours de Schémas directeurs sectoriels et régionaux de l'irrigation devrait s'accompagner d'une planification concommittante de l'hydraulique agricole. A cet effet, il est proposé la fiche de projet A10 qui complètera les fiches de projet A8 et A9 sur les eaux de surface non pérennes et les eaux souterraines. Au total, ces deux projets se montent à 750 millions de F.CFA

En ce qui a trait aux programmes régionaux d'investissement, la DNGR a proposé [7-2] deux séries de projets, l'une sur le court terme (1989-1993) en cours ou en phase de démarrage, l'autre sur le moyen terme (1994-2001), en voie d'étude ou de recherche de financement. Ils sont récapitulés dans le tableau 9.5 ci-après.

Tableau 9.5 - Projets d'irrigation à partir des eaux de surface pérennes, à court et moyen termes, proposés par la DNGR

PROJETS CO	URT TERME (1989 - 1993		PROJETS &	OYEN TERME (1994 - 2001)
Localisation	Réhabil. (ha)	Nouveaux (ha)	INVEST. (10° F.CFA)	Localisation	Réhabil. (ha)	Nouveaux (ha)	INVEST. (10° F.CFA
BAGUINEDA DAYE OFFICE NIGER FAGUIBINE PIV Mopti-Ségou PIV Tombouctou PIV Gao Zone lacustre FIDA Pays Dogon YELIMANE Racc. MACINA	2.536 14.000 495 200 360 110	27.800 10.500	5,9 3,4 22,4 1,2 0,9 0,4 0,8 3,8 0,7 0,4 0,3	OFFICE NIGER EXTENSION SAHEL TALO - SAN SEUIL DJENNE AVAL ANSONGO MALI SUD RESSOU-KILLY HARE GOUBO AVAL MANANTALI KONA KORIENTZE HAMADJA	15.500 - 140 - - - 2.847	28.560 22.453 34.293 2.200 642 2.350 960	29,2 45,7 29,0 70,0 2,9 0,2 1,3 2,0 12,9 9,6 2,7
TOTAL 1989-1993	20.737	38.917	40,2	PIV Mopti PIV Gao PIV Tombouctou	-	80 720 498	0,2 1,6 1,1
TOTAL PROJETS 1989 - 2001	38.724	134.406	248,6	TOTAL 1994 - 2001	17.987	95.489	208,4

Les montants moyens d'investissement par hectare découlant du tableau 9.5 sont indiqués dans le tableau tableau 9.6 ci-après :

Tableau 9.6 - Coûts moyens actuels et futurs d'investissement à l'hectare irrigué à partir des eaux de surface pérennes, en millions de F.CFA

DDO TEMO	REHA	BILITATI	ON	NOUVEA	UX PERIM	1ETRES	ENSE!	MBLE PROJ	ETS
PROJETS	Nombre d'hect.	Inves- tiss.	Coût ha	Nombre d'hect.	Inves- tiss.	Coût ha	Nombre d'hect.	Inves- tiss.	Coût ha
1989- 1993	20.737	31.400	1,514	38.917	8.800	0,226	59.654	40.200	0,674
1994- 2001	17.987	43.100	2,396	95.489	165.300	1,730	113.476	208.400	1,837
TOTAL (MOY.)	38.724	74.500	1,924	134.406	174.100	1,295	173.130	248.600	1,731

L'examen de ces programmes et des tableaux 9.5 et 9.6 appelle quelques commentaires:

- la réhabilitation des périmètres existants couvre une superficie considérable (près de 40.000 hectares) pour un coût très élevé (74,5 milliards de F.CFA), soit un coût moyen de l'hectare réhabilité atteignant près de 2 millions de F.CFA, c'est-à-dire un coût supérieur à celui de l'hectare nouveau qui est de l'ordre de 1,75 millions de F.CFA;
- le rythme de réalisation de nouveaux périmètres en submersion contrôlée devrait passer de 6.900 à 8.500 hectares/an dès 1990 et jusqu'en 2001 tandis qu'en maîtrise totale de l'eau le rythme devrait passer de 900 à 3.500 ha/an. Compte tenu des problèmes liés au niveau des crues et des rythmes actuels, les chiffres proposés paraissent fortement surestimés;
- la répartition régionale des programmes ne modifie pas la répartition actuelle, l'essentiel des investissements étant consacré aux Régions 4 et 5 de Ségou et Mopti (plus de 70 %), contre 6 à 7 % pour les 3 premières et 20 % pour les 2 dernières.

Compte tenu de ce qui précède et des différentes contraintes, notamment hydrologiques et de rentabilité économique (voir Chapitre 7), il serait particulièrement utile d'élaborer un Schéma Directeur de l'hydraulique agricole à partir des eaux de surface pérennes pour parvenir à une programmation plus réaliste établie sur une stratégie cohérente et des données plus précises. C'est dans ce but qu'est proposée la fiche de projet A10.

Au niveau des programmes d'investissement, on se limitera à la proposition de la DNGR (Tableau 9.5) sur le moyen terme (1994-2001), soit 208 milliards de F.CFA, diminuée des investissements liés au seuil de Djenné (70 milliards de F.CFA) et à l'extension Sahel (45 milliards de F.CFA) qui apparaissent moins urgents et programmables plutôt sur le long terme. Cette solution permettrait de ramener le coût à l'hectare et le rythme annuel de réalisation à des valeurs plus réalistes. Ainsi, les investissements proposés sur la période des deux prochains plans quinquennaux sont de l'ordre de 93 milliards de F.CFA. La programmation régionale proposée par le Schéma Directeur (B19) n'est pas illustrée par une fiche de programme puisque celles-ci ont été élaborées au niveau de la DNGR [7-2].

9.6.2. Irrigation à partir des autres ressources en eau

Dans l'optique d'un aménagement plus équilibré du territoire, le Schéma Directeur propose une mise en valeur de "l'arrière-pays" par l'irrigation à partir des eaux de surface non pérennes et des eaux souterraines, et notamment dans les trois premières Régions du Mali qui ont peu bénéficié jusqu'à présent d'aménagements hydro-agricoles.

Cependant, les contraintes d'irrigation à partir de ce type de ressources sont nombreuses, principalement d'ordre économique, mais aussi le manque d'expérience et l'insuffisance de l'encadrement qui font peser de grandes incertitutdes (et un certain scepticisme) sur les possibilités de la mise en valeur de ces ressources pour l'irrigation.

C'est pour tenter de lever ces incertitudes que le Schéma Directeur propose quatre projets pilotes nationaux pour un montant de 1,73 milliard de F.CFA sur le premier plan quinquennal et deux programmes régionaux d'investissement de 1994 à 2001 pour un montant global de 7,7 milliards de F.CFA (Fiches de programme B20 et B21), dont 4,2 pour les eaux de surface non pérennes et 3,5 pour les eaux souterraines.

9.6.2.1. Projets pilotes

Les fiches de projet A7, A8, A9 et A12 explicitent les actions à mener, au cours du plan 1992-1996 :

- le projet A7 propose la conception et la construction de six ouvrages expérimentaux de type différent pour l'irrigation à partir des eaux de surface non pérennes;
- le projet A8 propose de tester un premier programme-pilote de mise en valeur des eaux de surface non pérennes, complémentaire du précédent;
- le projet A9 est un projet de diagnostic et de planification de l'irrigation à partir des eaux souterraines (Schéma Directeur Sectoriel);
- le projet A12 propose la vulgarisation des techniques d'épandage de crues dans les petits bassins versants en zone sahélienne (fiche préparée par la FAO).

Ces 4 projets pilotes nationaux d'assistance technique (d'un coût global de 1,73 milliard de F.CFA) permettront d'élaborer et de lancer des programmes de développement de l'irrigation vers le milieu du Plan 1992-1996 et qui se poursuivront sur le Plan 1997-2001.

9.6.2.2 Programmes régionaux

Compte tenu de ce qui précède, il est difficile de prévoir, avant les résultats des projets pilotes, quelle ampleur prendra le développement de l'irrigation à partir de ce type de ressources en eau d'ici l'an 2000. D'autant plus que, même si les projets cidessus obtiennent des résultats positifs, le développement de l'irrigation dépendra largement des initiatives villageoises.

Les enveloppes de programmes proposés ci-dessous ne sont donc qu'indicatives.

a) Irrigation à partir des eaux de surface non pérennes

Anticipant sur les résultats des projets A7 et A8 et sur l'ampleur des initiatives villageoises, le Schéma Directeur propose (Fiche de programme B20), selon les zones écologiques [SDM/ENP/4], les aménagements ci-après⁽¹⁾ sur une période de 7 à 8 ans à partir de 1994.

⁽¹⁾ Les aménagements proposés initialement [SDM/ENP/4] ont été réduits du tiers ou de moitié pour tenir compte des capacités d'étude et de réalisation.

Tableau 9.7 - Coûts d'investissement (estimés) des programmes régionaux 1992-2001 d'irrigation à partir des eaux de surface non pérennes

	Superf.	Coût (1	millions FA)
	(ha)	Etudes	Travaux
- Frange sahélienne (Nord des Régions de Kayes, Koulikoro et Ségou, Région de Mopti)			
. 330 aménagements de 10 ha (8 petites digues fil- trantes sur chaque site)	3.300	150	1.000
. 30 terroirs villageois de 10 ha aménagés pour épandage de crue (Région de Kayes)	300	300(1)	60
- Frange soudano-sahélienne (Sud des Régions de Kayes, Koulikoro et Ségou, Nord de Sikasso) . 40 petits barrages de retenue irrigant à l'amont environ 50 ha de riz flottant avec cultures de décrue et irrigation à l'aval de 5 ha en cultures maraîchères par puisards	2.200	150	1.400
 Frange soudano-guinéenne (Sud des Régions de Kayes et Sikasso) 80 aménagements de bas fonds de 50 ha (10 diguettes sur chaque)⁽²⁾ 	4.000	80	800
Total:	9.800	680	3.260
		3.9	940

Enfin, le Schéma Directeur propose également un programme de réhabilitation des aménagements existants résultant de l'inventaire des ouvrages proposé dans la fiche de projet A8. Pour les besoins du Schéma Directeur, on estime très schématiquement le volume des travaux (à exécuter par la Direction Nationale du Génie Rural et l'Opération de Travaux d'Equipement Rural) à 260 millions de F.CFA (120 ouvrages à 2 millions en moyenne, plus 20 millions de frais d'étude).

⁽¹⁾ Y compris personnel expatrié et formation d'encadreurs et responsables villageois, matériel et sous-traitance pour le suivi hydrologique.

⁽²⁾ La Banque Mondiale se propose d'en financer une partie dans le Cercle de Bougouni au cours de la 3e phase du projet Mali-Sud/CMDT.

Le programme d'irrigation à partir des eaux de surface non pérenne proposé atteint donc un total de 4,2 milliards de F.CFA pour la mise en valeur, à partir des eaux de surface non pérennes, de 9.800 hectares, soit un coût de l'eau de 430.000 F.CFA à l'hectare irrigué.

b) Irrigation à partir des eaux souterraines

On se basera sur les hypothèses suivantes (voir Chapitre 7):

- 20 % des villages (soit 2.000), 50 % des Centres ruraux (soit 280) et des Centres semiurbains (soit 40) auront la volonté et la possibilité de développer un micro ou un petit périmètre irrigué (PPIV) à partir des eaux souterraines soit environ 2.320 périmètres;
- 30 % des familles (de 10 personnes en moyenne) de ces localités seront prêtes à s'engager activement dans l'irrigation, à raison de 10 ares par famille;
- tous les villages et Centres retenus disposent de points d'eau avec un débit correspondant à la superficie à irriguer selon leur taille.

On arrive aux nombres de PPIV et aux superficies théoriques indiquées dans le tableau 9.8 (sans tenir compte des superficies en irrigation de complément pour les céréales fourragères dans le cas de l'utilisation d'une pompe à traction animale):

Tableau 9.8 - Potentiel de création de petits périmètres irrigués villageois

	Nb. tot. 2001	% à équ.	Nb. PPIV	Pop. 2001	Nb. familles	% in- tér.	Nb. familles intéres.	Superf irrig. (ha)
Villages	10.008	20	2.000	5.631.405	560.000	30	168.000	1.680
Centres ruraux	555	50	280	1.600.226	160.000	30	48.000	480
Centres semi- urbains	84	50	40	561.684	60.000	30	18.000	180
TOTAL	10.647		2.320	7.792.315	780.000		234.000	2.340

La programmation doit également tenir compte des coûts à l'hectare selon les différents périmètres réalisables, mais aussi de la taille des localités. Ainsi :

- dans les villages (moins de 2.000 habitants), on pourra, selon les hypothèses ci-dessus, cultiver au maximum 2 hectares. On peut donc prévoir pour ces localités deux types d'aménagement :
 - pour 70 % des villages des micro périmètres avec pompe manuelle à fort débit (30 m³/j) irrigant 1/2 hectare au coût unitaire de 0,5 million de F.CFA,
 - pour 30 % des villages, des petits périmètres avec pompe à traction animale (60 à 120 m3/j) permettant d'irriguer 1 à 2 hectares soit 1,5 ha en moyenne, au coût unitaire de 1 million de F.CFA.

- dans les Centres ruraux (2.000 à 5.000 habitants), on pourra cultiver des petits périmètres avec pompe solaire ou diésel (150 à 180 m³/j) permettant d'irriguer 2 à 3 hectares (2,5 hectares en moyenne), au coût unitaire du périmètre de 7 millions de F.CFA (moyenne pompes solaires/diésel).
- dans les centres semi-urbains (5.000 à 10.000 habitants), on installera des petits périmètres avec pompe diésel (300 m³/j) de 5 hectares en moyenne (limite de débit) au coût unitaire de 6 millions de F.CFA.

Sur ces bases, on arrive aux coûts de programmation (en millions de F.CFA), et donc aux superficies (en hectares), suivants:

									COUT	SUPERF.	
_	1.400	micro-	périmètres	de 0,5	ha x	0,5	M F.CFA/PPIV	:	700	700	
-	600	petits	périmètres	de 1,5	ha x	1 M	F.CFA/PPIV	:	600	900	
_	280	petits	périmètres	de 2,5	ha x	7 M	F.CFA/PPIV	:	1.960	200	
	2.320								3,500	2. 500	

Le programme, récapitulé dans la fiche de programme B20, atteint donc 3,5 milliards de F.CFA (y compris le coût des études estimé à 300 millions de F.CFA) pour une superficie irriguée de 2.500 hectares, soit un coût de l'eau de 1,4 million de F.CFA par hectare.

Certains PPIV des deux derniers groupes pourront être réalisés en liaison avec des systèmes d'adduction d'eau sommaire (§ 9.3) lorsqu'ils ne consomment pas toute l'eau mise à leur disposition. La répartition par Région de ces PPIV sera faite sur des critères socio-économiques et hydrogéologiques (choix des populations, profondeur du forage et du niveau dynamique, débit, possibilités de commercialisation, etc...) qui influent sur le coût de l'eau et donc la rentabilité du périmètre.

A noter que le Fonds Européen de Développement (FED) envisage d'installer dans la Région de Mopti 365 ha de périmètres irrigués avec :

- 105 pompes solaires de type P2 et P3 (262 millions de F.CFA) qui irrigueront chacune 1 ha de riz (complément) et 0,6 ha de maraîchage, essentiellement dans les Cercles de Bandiagara et du delta intérieur, soit une superficie irriguée de 170 ha,
- 100 pompes solaires de type P3, P4 et P5 (625 millions de F.CFA) pour usages mixtes Adduction/irrigation de vergers (1,5 ha) et de maraîchage (0,45 ha), soit 195 ha.

9.7. VUE D'ENSEMBLE ET RECAPITULATION

Le tableau 9.9 montre que les programmes régionaux d'investissement et les projets nationaux d'accompagnement proposés atteignent un total de 261 milliards de F.CFA (approximativement 870 millions de dollar) répartis entre les deux Plans quinquennaux 1992-1996 (113,13 milliards - 43,3 %) et 1997-2001 (147,87 milliards - 56,7 %)

L'ensemble de la programmation proposée se répartit entre 12 projets nationaux d'appui (6,65 milliards de F.CFA) et les 21 programmes régionaux d'investissement (254,35 milliards de F.CFA) dont 14,9 milliards pour les études et le suivi.

Sur l'ensemble des 2 prochains Plans, les programmes d'alimentation en eau et d'assainissement ruraux et urbains (B1 à B16) et les projets associés (Fiches A1 à A5) représentent 55,1 % du total. L'irrigation (essentiellement à partir des eaux de surface pérenne) recueille 39,7 % des financements et l'hydraulique pastorale 5,2 %. Les travaux interviennent pour 91,8 % du total tandis que les activités d'étude, de suivi, de contrôle, de sensibilisation, d'animation et de formation entrent pour 5,7 %, les 2,5 % restant étant consacrés aux projets d'assistance technique.

Le tableau 9.10 montre que la Région de Ségou reçoit la plus grande partie des investissements (27,7 %) du fait de l'irrigation à partir du fleuve Niger, suivie de la Région de Koulikoro (19,1 %) du fait de la présence de Bamako (investissements d'AEPA), puis de la Région de Mopti 17,8 la plus défavorisée jusqu'à présent.

Tandis que l'alimentation en eau des populations et l'irrigation à partir des grands fleuves restent prioritaires et seront couvertes par des programmes à financement majoritaire de l'Etat et avec une participation accrue des populations, les programmes à but de rentabilité économique (hydraulique pastorale et irrigation à partir des eaux de surface non pérennes et souterraines) nécessitent d'abord des études sectorielles et des expérimentations (projets pilotes) au cours du prochain Plan (8,69 milliards de F.CFA) et ne prendront de l'ampleur qu'au cours du Plan 1997 - 2001 (14,33 milliards de F.CFA).

Les montants totaux prévisionnels augmentent d'un Plan à l'autre et leur répartition annuelle est de 22 milliards de F.CFA sur le 1er Plan et de 32 milliards de F.CFA sur le second, avec diminution au début du 1er Plan et à la fin du 2e Plan (phases de démarrage et d'achèvement).

Le tableau 9.10 montrant la répartition des investissements pour chaque Région administrative, par sous-secteur et par Plan, a été établi selon les chiffres des tableaux 9.1 à 9.9. Pour la répartition par Plan, on a appliqué, pour chaque Région, les mêmes pourcentages obtenus, sur chaque sous-secteur, selon leur répartition montrée au tableau 9.3. Cette distribution empirique n'est donc évidemment qu'indicative.

Tableau 9.9 - Répartition des projets nationaux et des programmes régionaux 1992-2001, par année et plan quinquennal et par sous-secteurs de l'eau (en millions de F.CFA)

1	1991		Pilan (ulk-oby.	AL 1992	-1996			PLAN &	DINGUERN	AL 1997	-2001				MOTAUL !			
PROGRAMMATION	1991	1992	1993	1994	1995	1996	TATGE	1997	1998	1999	2000	2001	TOTAL	PROJETS NATIO- NAUI		(HHES RS) Travaux		SOUS-SEC	TEURS
		1336	1353	1954	1939	1440	10186	1231	2550	1555	2000	2001	IVIND		Suivi	11040nT	PESCHAIC	10181	•
1. GENERAL - Projet Al		100	600	350	250	50	1,650	•	-	•	•	•	•	1.650	•	-	-	1.650	0,6
2. RYDRAULIQUE ET ASSAINIS- NISSEMENT VILLAGEOISE - Projet A2 - Projet A5	10	10 10	300 226	500 100	180 150	220	1.006 760	- -	- -	-			:						
- Programmes El à B7 , Etudes - Suivi , Travaux	100 £20		350 5.000	400 5.000	400 5.000	45 0 5.000	2.600 25.520	450 1,000	45 0 10.000	450 10.000	450 10.000	310 6.000	2.110 43.000	1.700	4,110	€8.520	72.630	74.2301	28.5
3. ADDUCTION D'EAU SOMMAIRE BY ASSAINISSEMENT - Programmes BB à B14 . Etudes - Suivi	100		100 1.500	100	150 2,000	150 2.500	100 9.000	170	200 3.500	200 3.500	200 3.500	40 2.490	810 16.490			65 106	00.000	85 000	
. Treveur 4. Ethraulique urbaine		1.000			2,000	2.500			3.500	3.000	3.300	2.480	10,490	•	1.510	25.490	27.000	27.000	10,4
- Projet A3 - Programme B15 . Btudes - Suivi . Travacx	200	150 160 2.600	170 160 2.600		160 2.600	160 2.600	320 800 13.200	500	200 3.000	200 3.000	200 3.600	200 3.000	1,000 15,000	320	1.800	28.200	30.000	30.320	21,6
5. ASSAINISSEMENT URBAIN - Projet A4 - Programme B16 , Etudes - Suivi		2 00 60	200 60	60	60	60	400 300	60	60	60	6 11	60	300						
. Treveti		910	940	916	940	940	4.166	£ ţ Ď	940	940	\$40 \$40	940 940	306 4,700	4,00	600	9.400	10.900	10.400	4,0
6. HYDRAULIQUE PASTORALE - Projet A5 - Programmes B19 et B18 . Etudes - Suivi . Travaux	100	50 50 500	50 500	50 1.000	50 1.000	. 200 1.500	\$00 4,\$00	50 1.780	50 1.750	50: 2.000	50° 2.000	100 700	306 8.209	100	800	12.700	13,500	13.600	5,2
7. HYDRAULIQUE ACRICOLE a. Eaux de surface pérennes - Projet All - Projet All		200 100	300 150				. 500 210							{750}	(5.620)	(87.906)	(93.520)	(94.270)	(36,1)
- Frogramme BI9 Brudes et suivi Travaux	900	500	500 8.000	500 8.500	500 8.000	500 8.000	2. 500°		650 10.000	650 10,000	£50 10.000	520 1.000	3.120 47.000	1					
b. Eaux de surface n.péren. - Projet A7 - Projet A8 - Projet A12	50 50	150 200 100	150 150 100	100 100 100	90 10	*******	450 890 840						******	(1.380)	(240)	(3.960)	(4.200)	(5.580)	(2,1)
- Frogramme B20 . Etudes - Suivi . Travaux				10 250	30 470	30 470	10 1.190	35 665	35 565	35 565	- 35 565	30 510	170 2. 770	-					
c. Eaux souterraines - Projet A9 - Programme B21		\$0	200	100			350							(350)	(220)	(3.280)	(3.500)	(3.850)	(1,5)
. Btudes - Suivi . Travaux				5 95	10 190	20 280	35 565	25 375	40 560	40 560	260 40	40 560	185 2.715	2.480	6,080	95.140	101.220	103.700	39,1
TOTAUI	2.030	20.830	22.350	22.520	22.270	23.130	113.130	28,770	32.000	32.256	32.250	22.600	147.870	6.£5C	14.900	239,450	254.350	261.000	
p.r. au Plan corresp. p.r. au total	1,6 0,8	18,4 8,0	19,8 8,6	19,9 8,6	19,7	20,4 8,8	100	19,5	21,5	21,8	21,8	15,1 8,6	100 56,7	2,5	5,7	91,8	97,5	100	100

⁽¹⁾ Certains projets et programmes devraient commencer des 1991

- 21 -

Tableau 9.10 - Répartition des investissements des programmes régionaux 1992-2001 (travaux + études et suivi) par Région, Plan et Sous-secteur (en millions de F.CFA)

:	NAU DE LOS	TAND DE	a naucet	ONO DATE	UPDDAI	II TAUB	LOGITH	CCCHCNO	menna.	II TAUD		HY	DRAULIQU	JE AGRICO)LB				TOTAL	JX		·
REGIONS	ASSAINI	LIQUE ET ISSEMENT AGEOIS	SONRA	IRBS ET I	URBA	VINE TIOR		ISSBMBNT Bain (1)		JLIQUB DRALE	SUP	AUX DE PACE ENNES	A/P BA SURFACE ET SOUT	AUX DE 3 N.PER. PERRAIN.	RESS(ISENBLE DURCES BAU	PLAN 1992-1	[99 6	PLA1 1997-2	1 2001	BNSBM DBUX P 1992-	LANS
	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	PLAN 92-96	PLAN 97-2001	INVES- TISSEM.	x	INVES- TISSEM.	X	INVES- TISSEM.	X
1. EAYES	3.855	6.320	2.080	3.710	900	1.000	315	315	740	1.260	2.200	2.500	340	1.080	2.540	3.580	10.430	9,8	16.185	10,9	26.615	10,5
2. KOULIKORO	4.530	7.420	1.720	3.050	8.900	10.000	3,150	3.150	740	1.260	1.300	1.500	420	1.330	1.720	2.830	20,760	19,5	27.720	18,7	48.480	19,1
3. SIKASSO	4.650	7.615	2.020	3.610	1.200	1.500	450	450	1.370	2,330	800	1.000	330	1.030	1.130	2.030	10.820	10,2	17.535	11,9	28.355	11,1
4. SEGOU	4.750	7.800	1.550	2.770	1.400	1.600	500	500	640	1.090	21.500	25.000	380	1.170	21.880	26.170	30.720	28,8	39.930	27,0	70.650	27,7
5. MOPTI	6.580	10.790	1.340	2.390	800	900	285	285	640	1.100	9.000	10.000	290	910	9.290	10.910	18.935	17,8	26.375	17,9	45.310	17,8
6. TOMBOUCTOU	1.600	2.715	420	750	450	550	175	175	410	€90	3.500	4.000	50	150	3.550	4.150	6.665	6,3	9.030	6,1	15.695	6,2
7. GAO	1.495	2.450	570	1.010	350	450	125	125	460	770	5.100	6.120	50	170	4.150	6.290	8.150	7,6	11.095	7,5	19.245	7,6
TOTAUX/PLAN	27.520	45.110	9.700	17.300	14.000	16.000	5.000	5.000	5.000	8,500	43.400	50.120	1.860	5.840	45.260	55.960	106.480	100	147.870	100	254.350	100
* PAR PLAN	37,9	62,1	35,9	84,1	46,7	53,3	50,0	50,0	37,0	63,0	46,4	53,6	24,2	75,8	44,7	55,3	41,9	100	58,1	100	100	100
TOTAUX S/SECT.	72	.630	27	.00 0	30	.000	10	.000	13	.500	93	.520	7	.700	101	. 220		254	.350			
* PAR S/SECT.	21	8,6	1),6	1	1,8		3,9		5,3	3	6,8		3,0	3!	9,8		1	00			

Il est à souligner qu'après le débat sur la version provisoire du Schéma Directeur au cours de la Conférence Nationale de Juin 1990, il a été recommandé d'inclure les études et les investissements relatifs à l'hydraulique et l'assainissement urbains ainsi qu'à l'irrigation à partir des grands fleuves, ce qui a été fait dans la présente version. Cependant, l'insuffisance et l'imprécision des données disponibles sur les investissements nécessaires et le manque de temps pour les améliorer font que les chiffres avancés dans ce chapitre ne sont que des ordres de grandeur qui devront être revus et détaillés au cours des projets d'études proposés (Projets A3, A4, A9, A10 et A11).

Ainsi, la programmation 1992-2001 est passée de 126 milliards de F.CFA à 261 milliards, soit plus double de la programmation initiale, dont 40 milliards pour l'AEPA urbains et 95 pour l'irrigation à partir des eaux de surface pérennes.

De ce fait, les pourcentages globaux ou par Plan d'investissement par Région montrés par le tableau 9.10 ne donnent pas une image correcte du reéquilibrage régional qui se proposait de faire le Schéma Directeur. Ceci est dû à l'importance des investissements dans l'irrigation à partir des fleuves pour les Régions 4 et 5 ou dans l'AEPA urbains pour la Région 2 où se situe la capitale. Ces pourcentages respectent approximativement les pourcentages régionaux de population ainsi que le montre le tableau 9.11 ci-après, avec cependant une augmentation substantielle sur les Régions de Ségou et de Mopti, celle de la Région de Koulikoro étant dûe à la présence de Bamako.

Tableau 9.11 - Coût per capita des investissements régionaux 1992-2001

DEGLOVA	POPULAT PROJETEE E		INVESTISSE 1992 - 2		COUT D'INVES- TISSEMENT
REGIONS	Nombre	%	Montant (106 F.CFA)	%	PER CAPITA (arrondi) (en F.CFA)
1. KAYES	1.440.673	14,3	26.615	10,5	18.500
2. KOULIKORO	2.931.338	29,0	48.480	19,1	16.500
3. SIKASSO	1.671.451	16,5	28.355	11,1	17.000
4. SEGOU	1.724.507	17,1	70.650	27,7	41.000
5. MOPTI	1.488.370	14,7	45.310	17,8	30.500
6. TOMBOUCTOU	446.641	4,4	15.695	6,2	35.100
7. GAO	400.243	4,0	19.245	7,6	48.100
TOTAUX (moyenne)	10.103.223	100	254.350	100	(25.200)

9.8. CONCLUSIONS ET RECOMMANDATIONS

Les chapitres précédents ont montré l'importance des investissements proposés pour les 10 ans à venir dans les domaines de l'hydraulique villageoise, rurale, semiurbaine, pastorale et agricole⁽¹⁾: ils pourraient dépasser 870 millions de dollars répartis entre 21 programmes régionaux d'investissements, y compris les études de pré-investissement, et 12 projets nationaux d'accompagnement. Ils comprennent également des actions de sensibilisation, d'animation et de formation en milieu rural pour que celui-ci devienne un partenaire à part entière du développement du Secteur Eau. Les chapitres précédents ont aussi montré les limites du Schéma Directeur qui n'est qu'indicatif et sommairement régionalisé. Il sera mis en oeuvre par la DNHE en collaboration et coordination avec toutes les parties concernées (Agriculture, Elevage, Santé, Administration Territoriale et Plan) pour parvenir à la programmation, l'exécution et le suivi des actions, projets et programmes. D'autres Ministères (Finances et Commerce, Education, Travaux Publics) interviendront également car le Secteur Eau est un secteur national qui intéresse l'ensemble des Administrations et auquel collaboreront au moins une vingtaine d'Agences de coopération et de nombreuses ONG.

Pour "piloter" ce Secteur, la DNHE devra être reconnue comme chef de file et disposer d'une structure renforcée et régionalisée, mais aussi d'un système efficace de coordination et de suivi du Schéma Directeur. Il faudra enfin mettre en place des organismes de financement et de crédit spécialisés et décentralisés et mener un effort de promotion du secteur privé et d'information des bénéficiaires.

Les conclusions et recommandations sur ces principaux points sont détaillées ciaprès.

9.8.1. Coordination

Le Comité Consultatif de l'Eau qui a joué un rôle très utile au cours de l'élaboration du Schéma Directeur, doit maintenant institutionnaliser son action par des réunions à date fixe, avec ordre du jour et compte-rendu, et avoir un statut fixant ses attributions et responsabilités. Il devra porter son effort sur les actions suivantes:

- faire inscrire, dans le prochain Plan quinquennal, la politique de l'Eau, les stratégies de mise en oeuvre et le programme adopté, suite à la table ronde des bailleurs de fonds,
- participer à la formulation des projets du prochain Plan,
- suivre leur réalisation et leur impact,

⁽¹⁾ Par manque de données et compte tenu de leur faible développement actuel, des programmes d'hydraulique pour l'industrie, la pisciculture, la foresterie ou les mines n'ont pas été prévus ici (voir chapitre 7). Ils devront être intégrés dans le cadre du futur Plan Directeur.

- régionaliser le Schéma Directeur et préparer le Plan Directeur Régionalisé,
- organiser la coordination intersectorielle ainsi qu'avec les bailleurs de fonds, les ONG et le secteur privé.

La DNHE assurant la Présidence du Comité aura évidemment un rôle prépondérant, mais les autres membres doivent contribuer pleinement et activement pour tout ce qui les concerne.

Enfin, une fois préparées de façon coordonnée par ce Comité, certaines décisions devront être prises à un niveau supérieur qui devrait être celui de la Sous-Commission de l'Eau qu'il faudra réactiver. Une action décisive et rapide dans ce sens, outre les effets positifs sur le développement du Secteur Eau, témoignerait sans ambigüité auprès de la communauté internationale de l'importance que le Gouvernement attache à ce Secteur.

9.8.2. Institutions

Peu de réformes institutionnelles ont été suggérées dans le Schéma Directeur. Dans le contexte actuel, la coordination des actions et des moyens des différentes administrations du Secteur Eau a paru un moyen plus efficace de gestion que la création de nouvelles institutions.

Cependant, étant donné son rôle majeur dans le Secteur, il est essentiel que la Direction Nationale de l'Hydraulique et de l'Energie soit renforcée dans le domaine de la Planification (études et synthèses, conception, suivi et contrôle des travaux, évaluation des résultats), et, parallèlement, régionalisée pour que les investissements considérables actuels et futurs du Secteur de l'Eau soient utilisés au mieux des besoins des utilisateurs ce qui est le souhait des bailleurs de fonds. En contrepartie de ce renforcement institutionnel et pour mieux assurer les tâches propres à une Administration publique, il est souhaitable que la DNHE se dégage progressivement des tâches d'exécution (forages ou barrages en régie, installation et entretien des pompes et des systèmes d'eau potable...) au profit soit d'un Office, soit de sociétés mixtes ou privées. Il est ainsi proposé en particulier que les moyens de la Direction Nationale de l'Opération Puits et du Service Forages de la DNHE soient regroupés, tel qu'il en est question, en un Office National des Puits et Forages pour exécuter, concurremment avec des entreprises privées, les programmes d'hydraulique villageoise et urbaine, conçus et contrôlés par la DNHE qui garderait ou recevrait cependant le minimum d'équipements nécessaires aux travaux de reconnaissance hydrogéologique et hydrologique ainsi que d'expérimentations méthodologiques.

Ces recommandations sont traduites par les fiches de projet A1, A2, A5 et A11 pour le renforcement de la DNHE, la fiche de projet A3 pour celui de l'EDM, la fiche de projet A6 pour celui de la DNHPA, la fiche de projet A6 pour celui de la Direction Nationale de l'Elevage (DNE) et les fiches de projet A7, A8, A9, A10 et A12 pour celui de la DNGR, de l'IER et de la Direction Nationale de l'Agriculture (DNA).

9.8.3. Formation

L'analyse de la situation actuelle a mis en lumière la nécessité d'une formation complémentaire de certains agents de l'Administration, notamment d'agents de développement communautaire, et des responsables des Comités de gestion, des Comités locaux et régionaux de développement ainsi que d'actions d'éducation des utilisateurs de l'eau eux-mêmes (éducation sanitaire notamment).

La formation, l'éducation, la sensibilisation, l'information constituent ainsi une composante obligée de toute action. Elles figurent dans les fiches de programmes et projets qui relèvent du Schéma Directeur. C'est pourquoi il n'a pas été jugé nécessaire de regrouper en un programme particulier l'ensemble de ces actions qui sont d'ailleurs spécifiques à chaque sous-secteur et doivent être adaptées aux conditions locales.

9.8.4. Financement du Schéma Directeur

Les programmes, projets et actions proposés par le Schéma Directeur ne pourront être mis en oeuvre par le Gouvernement qu'avec le concours des bailleurs de fonds. Cependant le Schéma Directeur ne saurait se réduire à un programme d'assistance car il est destiné à constituer, au niveau national, un outil de planification, graduellement amélioré et affiné; il importe donc que la participation nationale soit maintenue et si possible accrue et que des structures nationales permanentes de financement et de crédit soient conçues, organisées et mises en place.

Ces structures doivent être déployées sur l'ensemble du territoire national et être ainsi rapprochées le plus possible des utilisateurs, en milieu rural en particulier.

Actuellement, la seule source nationale de financement des projets d'intérêt général est la taxe de développement régional et local qui s'est substituée depuis le 01/01/88 (loi du 15 Mars 1988) à d'autres taxes et cotisations. Elle doit, selon des dispositions en préparation, être reversée pour 80 % aux Comités locaux de développement au niveau des Arrondissements, à travers les Comités de coordination du développement situés au niveau des Cercles, dans le cadre de Plans d'aménagement préalablement établis. Les projets relevant du Secteur de l'Eau pourront figurer dans ces Plans à condition que leur inscription s'y justifie. Cependant, ce canal de financement n'est pas spécifique au Secteur de l'Eau et, en particulier et sauf dispositions spéciales, il ne se prête pas à une orientation d'ensemble ni à un équilibrage régional des investissements [SDM/ECO/2].

Une autre source de financement pourrait être constituée par les cotisations des usagers de l'eau, mais elle suppose une mise de fonds initiale actuellement faite par les projets. Il importe donc que les structures nationales ne se limitent pas à une fonction de transit des financements internationaux mais étendent leur rôle à la gestion des fonds nationaux destinés au financement du Secteur, même s'ils restent modestes.

Ainsi, les investissements nationaux dans le Secteur pourront faire l'objet de deux modes de financement:

- pour les investissements relevant de services publics (Hydraulique villageoise, Adduction d'eau sommaire, Hydraulique pastorale et agricole dans certains cas), le financement pourrait se faire dans le cadre d'un Fonds National de l'Eau qui pourrait lui-même être partiellement financé par la taxe de développement régional et local [SDM/ECO/2];
- pour les investissements relevant du secteur privé (individuel ou associatif tels: groupements d'éleveurs ou d'agriculteurs pour l'irrigation par exemple), le financement devra se faire par un système de crédit rural, actuellement très peu développé au Mali. En attendant la mise en place d'un tel système, les groupements villageoise ou pastoraux pourraient faire appel soit aux fonds régionaux de développement, soit au Fonds National de l'Eau.

Il ne s'agit là que de principes directeurs dont les modalités d'application pourraient être éventuellement établies au moyen d'une étude particulière dans le cadre de la fiche de projet A1 ou A5.

Des questions importantes restent cependant à éclaircir entre le Gouvernement et les bailleurs de fonds :

- les moyens financiers proposés pour la réalisation du Schéma Directeur correspondentils à la priorité accordée au Secteur de l'Eau dans l'ensemble du Plan?
- doivent-ils être en augmentation sensible par rapport à ceux attribués au Secteur Eau dans le Plan actuel ?
- les effets induits des investissements du Secteur Eau sur les autres Secteurs du développement économique et social sont-ils pris en compte ?
- Comment l'Etat pourra-t-il exécuter toutes les activités et études qui sont attendues de lui (et en particulier la planification, le contrôle et le suivi) sans que sa contribution budgétaire n'augmente inconsidérément ?
- Enfin, la participation financière des populations aux programmes d'investissement et surtout à l'entretien qu'on voudrait voir s'accroître sensiblement, est-elle compatible avec leurs revenus?

Toutes ces questions en suspens montrent, s'il en était besoin, les limites et les incertitudes du Schéma Directeur.

Il appartient maintenant au Gouvernement d'endosser ce Schéma Directeur, de convaincre ses partenaires et les populations de sa détermination à le mettre en œuvre en sachant qu'il faudra en préciser et éventuellement rectifier les propositions et le discuter au niveau des Comités locaux et régionaux de développement. Ce sera la seule façon de parvenir à élaborer, dans les cinq prochaines années, un véritable Plan Directeur comprenant également les Plans Régionaux et constituant un cadre précis de Planification du Secteur de l'Eau au Mali.

9.9. FICHES DE PROJETS ET DE PROGRAMMES

Les 12 projets nationaux proposés aux sous-chapitres précédents sont succintement présentés et formulés dans les 12 fiches A1 à A12 ci-après. Pour les 14 premiers des 21 programmes régionaux, étant donné leur reproductibilité sur chaque Région et sur chacun des deux Plans, seuls des exemples sont présentés, à savoir:

- pour les 7 programmes d'hydraulique villageoise : 1 Fiche (B5A) pour un sousprogramme au NO de la Région de Mopti et sur le premier Plan 1992-1996,
- pour 7 programmes d'adductions d'eau sommaires : 1 Fiche (B12A) pour un sousprogramme dans la Région de Mopti et sur le premier Plan 1992-1996.

Les fiches B15 à B21 présentent des programmes sectoriels en hydraulique et assainissement urbains, en hydraulique pastorale et en irrigation, sur l'ensemble du Mali et sur les 2 prochains Plans quinquennaux.

En ce qui concerne l'hydraulique et l'assainissement urbains ainsi que l'irrigation, il est malaisé, on l'a vu, de programmer avec précision l'évolution future des financements, d'autant que certains seront définis à l'issue de projets d'études de type "Schéma Sectoriel", d'autres selon les résultats de projets-pilotes qui seront à réaliser préalablement (irrigation à partir des eaux de surface non pérennes et des eaux souterraines). C'est pourquoi les fiches correspondantes sont peu détaillées et ne fournissent que des orientations et des ordres de grandeur.

Les projets et les programmes sont récapitulés dans les tableaux 9.12 et 9.13 ci-après.

Tableau 9.12 - Récapitulatif des projets 1991-1996 proposés par le Schéma Directeur, en millions de F. CFA.

	A. PROJETS NATIONAUX D'ACCOMPAGNEMENT	PERIODE D'EXECUTION	BUDGET TOTAL	REPARTITION DU BUDGET	
		PROPOSEE	EST1ME	GVT.	EXT.
A1	-Appui à la planification et au développement régional du Secteur Eau	1992-1995	1.650	300	1.350
A2	-Appui à la gestion des systèmes d'alimentation en eau, au dé- veloppement de l'assainissement et aux initiatives de base en milieu rural	1991-1994	1.000	150	850
А3	-Réactualisation du Schéma Direc- teur sectoriel d'AEP urbaine et appui à la gestion des systèmes d'eau potable en milieu urbain	1992-1993	20	300	320
A4	-Diagnostic du Secteur de l'As- sainissement en milieu urbain et programme d'actions à long terme	1992-1993	40	360	400
A5	-Appui à la création d'entre- prises publiques, parapubliques ou privées d'études, d'équipe- ments et de travaux hydrauliques et d'assainissement	1992-1996	700	200	500
A6	-Appui à l'hydraulique pastorale	1992-1993	100	1 <u></u>	100
А7	-Conception et construction de six ouvrages types d'aménagement des eaux de surface non pérennes	1991-1994	450	120	330
A8	-Etude des possibilités de mise en valeur des ressources en eau de surface non pérenne	1991-1994	590	100	490
A9	-Diagnostic et planification sec- torielle de l'irrigation à partir des eaux souterraines	1992-1994	350	50	300
A10	-Planification de la mise en va- leur des ressources en eau de surface pérenne pour le dévelop- pement de l'hydraulique agricole	1992-1993	50	450	500
A11	-Etude intégrée et multisecto- rielle du delta intérieur du fleuve Niger	1992-1993	50	200	250
A12	-Vulgarisation des techniques d'épandage de crue en zone sahé- lienne	1992-1995	340	40	300
TOTAL PROJETS			6.650	1.120	5.530

Tableau 9.13 - Récapitulatif des programmes régionaux d'investissement 1992-2001 proposés par le Schéma Directeur et exemples de fiches (en millions de F.CFA)

B - PROGRAMMES REGIONAUX	INVESTISSE-	EXEMPLES DE FICHES				
PAR SOUS SECTEUR (1992-2001)	NBNT TOTAL 1992-2001	N.	TITER	PERIODE	MONTANT	
B1 - B7 HYDRAULIQUE VILLAGEOISE ET ASSAINISSEMENT RURAL : 7 programmes/ 14 sous-programmes	72.630	BSA	Hydraulique villageoise et as- sainissement rural au nord- ouest de la Région de Mopti	1992-1996	6.580	
B8 - B14 ADDUCTIONS D'BAU BT ASSAINIS- SEMENT SOMMAIRES : 7 programmes/ 14 sous-programmes	27.000	B12A	Adduction d'eau et assainisse- ment sommaires dans les cen- tres ruraux et semi-urbains de la Région de Mopti	1992-1996	1.340	
B15 HYDRAULIQUE URBAINE : 7 sous-programmes	30.000	Sera défini dans le cadre de la préparation des dossiers de la table ronde des bailleurs de fonds				
B16 ASSAINISSEMENT URBAIN : 7 sous-programmes	10.000	Sera défini dans le cadre de la préparation des dossiers de la table ronde des bailleurs de fonds				
B17 - B18 HYDRAULIQUE PASTORALE: 2 programmes		B17	Aménagements d'hydraulique pastorale en zone sahélienne et saharienne	1992-2001	9.080	
	13.500	B18	Aménagements d'hydraulique pastorale dans les zones à forte densité animale (Sikas- so-Mopti)	1992-2001	4.420	
B19 - B21 HYDRAULIQUE AGRICOLB: 3 programmes/21 sous-programmes (7 par programme)		B19	Aménagements d'hydraulique agricole à partir des eaux de surface pérennes	Sera défini dans le dossier de la table ronde		
		B20	Aménagements d'hydraulique agricole à partir des eaux de surface non pérennes	1994-2001	4.200	
	101.220	B21	Aménagements d'hydraulique agricole à partir des eaux souterraines	1994-2001	3.500	

FICHE DE PROJET A1

APPUI A LA PLANIFICATION ET AU DEVELOPPEMENT REGIONAL DU SECTEUR EAU (1992-1995)

a) Justification

Le Secteur Eau, vital pour le développement du Mali, est un domaine complexe, à intervenants multiples, à technicité élevée, à nombreuses implications socio-économiques locales. Le Schéma Directeur de mise en valeur des ressources en eau propose 12 projets nationaux d'assistance technique et 21 programmes régionaux d'investissement pour le développement de l'hydraulique villageoise, rurale, semi-urbaine, pastorale et agricole et de l'assainissement, d'un coût total de 261 milliards de F.CFA (870 millions de dollars US) sur les 10 prochaines années (2 plans quinquennaux 1992-1996 et 1997-2001). La Direction Nationale de l'Hydraulique et de l'Energie (DNHE) aura donc la lourde tâche de coordonner, de planifier et de gérer le développement de ce Secteur, en liaison avec les ministère de la Santé et des Affaires Sociales, de l'Elevage et de l'Environnement, de l'Agriculture, de l'Administration Territoriale et du Développement à la Base et du Plan, représentés au sein du Comité Consultatif de l'Eau nommé en Septembre 1989 et présidé par la DNHE.

b) Objectifs

Le but de ce projet de 4 ans 1/2 est principalement d'aider la DNHE et le Comité Consultatif de l'Eau à maîtriser le Secteur et à "piloter" le Schéma Directeur, en vue de :

- limiter les effets négatifs des aléas climatiques sur l'environnement ;
- couvrir les besoins en eau des populations rurales et urbaines ainsi que du bétail;
- accroître et diversifier la production agricole pour améliorer le niveau de vie et le revenu de la population rurale ;
- contrôler et préserver l'exploitation et la qualité chimique et bactériologique des ressources en eau :
- et, d'une manière générale, contribuer à la réalisation des deux objectifs fondamentaux du Plan: "autosuffisance alimentaire" et "lutte contre la sécheresse et la désertification".

c) Stratégie et principaux résultats attendus

- * Renforcement institutionnel de la Direction Nationale de l'Hydraulique et de l'Energie par les actions suivantes :
 - Création au sein de la DNHE d'une Division de la Planification, avec 3 services :
 - . Etudes,
 - . Conception, suivi et contrôle des Projets,
 - . Application du Régime de l'Eau,
 - et deux Unités :
 - . Informatique,
 - . Bibliothèque, Cartothèque, Photothèque sur les Ressources en Eau ;

- Création progressive de 6 Directions régionales de la DNHE auxquelles la Direction centrale déléguerait notamment la planification régionale, le suivi des projets, les études de faisabilité, les mesures sur les réseaux d'observation, dans les Régions de Mopti, Tombouctou, Gao, Sikasso, Kayes, Ségou et Koulikoro par ordre de priorité;
- Parallèlement, la DNHE et la Direction Nationale de l'Opération Putta (DNOP) devront se désengager de leurs activités de forage, de puits et de maintenance des pompes au profit d'un futur Office National des Puits et Forages (Fiche de projet A3) dont le statut devra rendre, à court terme, vers celui d'une entreprise privée.
- * Amélioration de la connaissance et surveillance des ressources en eau en terme de qualité et de quantité et de leur utilisation régionale (en liaison avec les autres projets et programmes), informatisation et diffusion de l'information.
- * Amélioration des méthodes et des techniques de captage, d'exhaure, de stockage, de distribution, de valorisation de l'eau et d'assainissement, en liaison avec les projets et programmes, dans le cadre de la législation et d'un document de normes et procédures.
- * Conception, suivi et contrôle des projets et programmes d'investissement dont la DNHE sera le maître d'oeuvre ou le conseil technique et pour lesquels la part consacrée aux études de préparation, au suivi, à l'animation, à la sensibilisation, à la formation et aux études d'impact est estimée à environ 15 milliards de F.CFA dans la programmation 1992-2001.
- * Préparation de 7 Plans Régionaux et d'un Plan Directeur de mise en valeur des ressources en eau.

d) Moyens et budget

Le Gouvernement mettra à la disposition du Projet :

- du personnel : 26 cadres, 42 techniciens, 35 agents divers pour environ 5.000 h/m,
- des locaux,
- des équipements,
- des frais de fonctionnement,

pour un total de l'ordre de 300 millions de F.CFA.

L'Agence de Coopération mettra à la disposition du Projet :

- du personnel: 4 experts permanents (200 h/m) et 10 consultants (100 h/m),
- des sous-traitances pour des constructions complémentaires, des forages-piézomètres et des équipements hydrologiques de sites,
- 10 bourses à l'étranger (120 h/m),
- des équipements durables et consommables,
- des frais de fonctionnement

pour un total estimé a 1,35 milliard de F.CFA (US \$ = 4,5 millions).

Le coût total du projet est donc de 1,65 milliard de F.CFA.

FICHE DE PROJET A2

APPUI A LA GESTION DES SYSTEMES D'ALIMENTATION EN EAU, AU DEVELOPPEMENT DE L'ASSAINISSEMENT ET AUX INITIATIVES DE BASE EN MILIEU RURAL (1991-1994)

a) Justification

Les enquêtes sur les moyens d'exhaure effectuées en 1988 et 1989 ont montré que, selon les zones, jusqu'à 50 % des pompes installées dans les villages peuvent être en panne et que beaucoup de villages sont suréquipés en forages et pompes, ces dernières pouvant être également sous-utilisées. La politique de décentralisation et de participation des populations à la conception, au financement et à la gestion des systèmes d'alimentation en eau est menée de manière non coordonnée et trop souvent incomprise et donc inappliquée par les villageois. L'amélioration de cette situation [SDM/AEP/6] doit être l'un des objectifs majeurs de l'Etat et des bailleurs de fonds.

b) Objectifs

Ce projet de 3 ans 1/2 a pour objectifs de :

- Susciter et appuyer les initiatives villageoises pour le choix, l'implantation, de la construction, l'utilisation et la gestion des points d'eau en fonction de leurs besoins en eau et de leur capacité de prise en charge;
- Harmoniser les méthodes de sensibilisation, d'animation et de formation ainsi que les normes techniques et financières à appliquer dans les programmes régionaux d'hydraulique villageoise et d'assainissememnt rural.

c) Stratégie et principaux résultats attendus

- * Mieux connaître le milieu rural grâce à des enquêtes approfondies sur les villages du même genre que l'enquête effectuée par le projet MLI/84/005 en 1989.
- * Préparer et diffuser auprès des Administrations, des bailleurs de fonds, des ONG et des bureaux d'étude, des documents normatifs précisant la stratégie de desserte en eau potable et de l'assainissement en milieu rural, les normes de réalisation des ouvrages, les conditions de financement ainsi que les méthodes de sensibilisation, d'animation et de formation au niveau des villages et centres.
- * Promouvoir la gestion des ouvrages d'hydraulique et d'assainissement rural par les populations grâce à :
 - la préparation et la large diffusion de documents audio-visuels de vulgarisation et à l'organisation systématique de réunions de sensibilisation avec les villageois,
 - la formation d'animateurs et de formateurs (agents de développement communautaires) ainsi que des membres des Comités locaux et régionaux de développement,

- la mise en place d'une structure décentralisée et d'une méthode de suivi des systèmes de gestion (recouvrement des coûts, entretien, etc...) à confier progressivement au secteur privé,
- des mesures incitatives pour le développement du crédit et de l'épargne.

d) Moyens et budget

Ce projet pourrait être piloté et exécuté par une section spécialisée du ministère de l'Administration Territoriale et du Développement à la Base (MATDB), avec participation de la DNHE et de la DNHPA sous le couvert du Comité Consultatif de l'Eau. Le Gouvernement fournira :

- du personnel (à temps plein et partiel) pour un total d'environ 800 h/m,
- des locaux,
- des équipements,
- des frais de fonctionnement;

pour un total d'environ 150 millions de F.CFA.

Les apports extérieurs seront constitués par :

- du personnel permanent pour 100 h/m et des consultants pour 100 h/m,
- des matériels et fournitures didactiques audio-visuelles et de la formation décentralisée,
- des sous-contrats d'études et enquêtes villageoises.
- des équipements et des frais de fonctionnement pour les enquêtes et la formation sur le terrain,

pour un total de 850 millions de F.CFA (US \$ = 2,85 millions).

Le coût total du projet est donc de 1 milliard de F.CFA.

FICHE DE PROJET A3

REACTUALISATION DU SCHEMA DIRECTEUR SECTORIEL D'AEP URBAINE ET APPUI A LA GESTION DES SYSTEMES D'EAU POTABLE EN MILIEU URBAIN (1992-1993)

a) Justification

Les responsabilités en matière d'équipement en adduction d'eau potable des centres urbains (plus de 10.000 habitants) sont partagées entre l'Energie du Mali (EDM) pour les plus grandes villes et la Direction Nationale de l'Hydraulique et de l'Energie (DNHE) pour les plus petites. Cette dualité pose un problème quant à l'approche coordonnée de ce sous-secteur de l'Eau, à l'homogénéité des modalités de gestion des systèmes d'AEP et à la standardisation des tarifs de vente d'eau.

En 2001, le Mali comptera 31 centres urbains de plus de 10.000 habitants et 84 centres semi-urbains de 5.000 à 10.000 habitants, soit 115 localités dont 29 seulement actuellement équipées d'une adduction d'eau moderne qui, dans la majorité des cas, ne couvrent qu'une partie de la population urbaine (50 % en moyenne).

b) Objectifs

Le projet a pour objectif de parvenir au bout de 2 ans à une actualisation du Schéma Directeur sectoriel de l'alimentation en eau potable du milieu urbain prenant en compte :

- une meilleure définition du sous-secteur urbain et du partage des responsabilités entre l'EDM, la DNHE et les communautés urbaines,
- la mise en oeuvre progressive d'une gestion des systèmes urbains d'eau potable par des compagnies fermières et/ou des sociétés privées ou mixtes de distribution, et, dans ce cas, définition du rôle des institutions gouvernementales,
- l'élaboration d'un programme d'actions à long terme (2001) prenant en compte les aspects financiers afin de déterminer une politique cohérente en matière commerciale : tarification, recouvrement des coûts, bonification et subvention, etc
 - c) Stratégie et principaux résultats attendus
- * Définition et mise en oeuvre de la politique générale du sous-secteur :
 - détermination des objectifs de développement en fonction des contraintes commerciales et financières,
 - délimitation des attributions et des responsabilités des institutions,
 - renforcement des structures de gestion et étude des possibilités d'affermage des systèmes,
 - conditions pour parvenir à un équilibre financier et à une uniformisation des charges à supporter par les consommateurs.

- * Elaboration d'un plan d'actions à long terme sur base d'analyses techniques, financières et économiques de projets bancables.
- * Elaboration d'une tarification homogène en fonction du mode de financement des infrastructures et de la répartition des charges entre l'Etat et les consommateurs.
- * Formation d'agents de gestion des systèmes d'adduction d'eau potable.

d) Moyens et budget

Le Gouvernement constituera un comité de pilotage du projet avec des responsables de l'EDM et de la DNHE. Il fournira en outre du personnel d'appui, des locaux et des frais de fonctionnement pour un montant de 20 millions de F. CFA.

L'Agence de coopération fournira:

- du personnel spécialisé: 2 experts permanents (48 H/M) et des consultants (20 H/M),
- des sous-traitances pour les enquêtes sur le milieu urbain et pour la formation des agents de gestion des systèmes AEP,
- des équipements durables et consommables,
- les frais de fonctionnement,

pour un montant total de l'ordre de 300 millions de F.CFA (US\$: 1 million).

Le coût total du projet sera donc de 320 millions de F.CFA.

FICHE DE PROJET A4

DIAGNOSTIC DU SECTEUR DE L'ASSAINISSEMENT EN MILIEU URBAIN ET PROGRAMME D'ACTIONS A LONG TERME (1992-1993)

a) Justification

Comme dans beaucoup de pays sahéliens, le secteur de l'Assainissement a été, au Mali, le "parent pauvre" de la Décennie Internationale de l'Eau Potable et de l'Assainissement.

Des stratégies, des normes et des programmes ont été proposés par la Direction Nationale de l'Hygiène Publique et de l'Assainissement (DNHPA) créée en 1980 au sein du Ministère de la Santé Publique et des Affaires Sociales. Mais les réalisations, et donc l'impact sur la santé, n'ont pas été à la hauteur des ambitions.

Cette situation a été causée par plusieurs facteurs :

- les caractéristiques du secteur de l'assainissement sont très mal connues, notamment la demande effective des populations et l'identification des besoins,
- les bailleurs de fonds n'ont pas considéré ce secteur comme prioritaire, sauf pour Bamako, encore que le niveau de réalisation y soit resté très modeste et consacré essentiellement à l'évacuation des eaux pluviales,
- l'insuffisance d'information et de sensibilisation des populations s'est traduite par la faible motivation et participation de ces populations tant en milieu urbain que rural.

b) Objectifs

Le projet aura deux objectifs essentiels :

- établir un diagnostic sérieux du secteur de l'assainissement en milieu urbain (l'assainissement en milieu rural étant traité dans le cadre de la fiche de projet A 2), comprenant un état de la situation actuelle, des besoins ressentis et des diverses contraintes institutionnelles, juridiques, techniques, sociales et économiques,
- élaborer un programme réaliste d'actions jusqu'en 2001, basé sur le diagnostic du secteur et détaillant les stratégies à mettre en oeuvre, le cadre institutionnel de cette mise en oeuvre, la formation d'agents d'information et de sensibilisation des populations visées, l'étude et la promotion de technologies appropriées, l'identification, la formulation, l'exécution, le suivi et l'évaluation de projets spécifiques, l'incitation et la promotion du secteur privé.

c) Stratégie et principaux résultats attendus

La stratégie consiste à mettre en place un comité national comprenant des cadres des institutions concernées (DNHPA, DNHE, DNUC (1), PUM (2), Services municipaux) soutenu pendant 2 ans par une équipe de consultants internationaux spécialisés dans les domaines du génie sanitaire, de l'hygiène publique, de la santé, de la sociologie et de l'économie.

DNUC: Direction Nationale de l'Urbanisme et de la Construction

PUM : Projet Urbain du Mali.

Les résultats attendus, sur la base du document établi fournissant le diagnostic du secteur et un programme d'actions sur 10 ans, seront les suivants :

- une réorganisation institutionnelle visant à une meilleure efficacité des structures,
- un programme détaillé d'éducation sanitaire et de sensibilisation des populations urbaines.
- une réglementation pour la protection de la qualité de l'eau et de l'environnement,
- des technologies adaptées aux besoins et aux capacités de gestion et de paiement des bénéficiaires,
- des cadres et techniciens de l'Administration, des ONG et du secteur privé formés,
- une plus grande participation du secteur privé grâce à des mesures financières et administratives incitatives,
- des projets de travaux bancables.

d) Moyens et budget

Le Gouvernement mettra à la disposition du projet :

- du personnel : cadres des diverses institutions du secteur regroupés au sein d'un Comité national sous l'égide de la DNHPA, des techniciens et agents divers, pour 600 H/M,
- des locaux (avec laboratoire),
- des équipements,
- des frais de fonctionnement (en particulier pour participation aux enquêtes sur le terrain),

pour un montant total d'environ 40 millions de F.CFA.

L'Agence de coopération mettra à la disposition du projet :

- du personnel spécialisé : 2 experts (48 H/M) et des consultants (24 H/M),
- des sous-traitances pour tester les technologies et les méthodes d'assainissement et pour effectuer les enquêtes,
- de la formation : 2 bourses à l'étranger, des stages sur place et un séminaire en fin de projet,
- des équipements durables et consommables,
- les frais de fonctionnement,

pour un montant total de 360 millions de F.CFA (US\$ 1,2 million).

Le budget total du projet est donc de l'ordre de 400 millions de F.CFA.

FICHE DE PROJET A5

APPUI A LA CREATION D'ENTREPRISES PUBLIQUES, PARAPUBLIQUES OU PRIVEES D'ETUDES, D'EQUIPEMENTS ET DE TRAVAUX HYDRAULIQUES ET D'ASSAINISSEMENT (1992-1996)

a) Justification

Une trop grande partie des études et des travaux pour l'hydraulique urbaine et villageoise, les adductions d'eau sommaires, l'assainissement et les aménagements pastoraux et hydroagricoles est actuellement effectuée par des entreprises étrangères alors que la DNHE, la Direction Nationale de l'Opération Puits (DNOP), l'Office des travaux et Equipements Ruraux (OTER) et l'Entreprise Malienne de Maintenance (EMAMA) ont démontré leur capacité à prendre une part de leurs marchés respectifs tandis que des puisatiers traditionnels et plus récemment les artisans-réparateurs de pompes manuelles formés par les projets et les tâcherons intervenants dans les travaux à haute intensité de main d'oeuvre ont démontré que le secteur privé pouvait jouer un rôle dans la construction et l'entretien des aménagements hydrauliques. Il en est de même pour quelques bureaux d'études maliens dans le domaine des études et des enquêtes.

Il s'agit donc maintenant de préparer l'avenir pour qu'au cours des grands programmes d'équipement, les secteurs public, parapublic et privé soient en mesure d'augmenter sensiblement leur participation à ces programmes, au moins au cours du 2e plan 1997-2001.

b) Objectifs

Le projet proposé aura pour buts, sur 5 ans, de :

- renforcer les bureaux d'études et les entreprises nationales d'équipement et favoriser l'émergence progressive du secteur privé,
- former un tissu d'artisans et de petites entreprises maliennes régionales capables de prendre progressivement le relais des entreprises étrangères de construction et d'entretien d'ouvrages hydrauliques favorisant ainsi l'emploi, notamment dans les centres ruraux et semi-urbains,
- encourager par des mesures appropriées la création d'entreprises et de sociétés mixtes de services, d'entretien, de construction et de fabrication.

c) Stratégie et principaux résultats attendus

* Identifier les capacités, évaluer les potentialités et dégager les contraintes des entreprises publiques ou parapubliques (DNOP, Service Forage de la DNHE, OTER, EMAMA), des artisans et des petites entreprises privées dans les domaines suivants : construction de puits et de forages, génie civil, vente de pompes, tubages et réservoirs, ouvrages d'assainissement, maintenance des ouvrages et des pompes, stockage et distribution de pièces détachées, entretien et gestion des système d'adduction d'eau, artisanat du secteur eau (dalous, canaris, filtres, transport de l'eau,...) ainsi que des bureaux d'étude et d'enquêtes.

- * Etudier et proposer, dans chaque cas, des mesures appropriées: privatisation, entreprises mixtes, regroupement et renforcement des entreprises publiques (par exemple: création d'un Office National des Puits et Forages à partir de la DNOP et du Service Forage de la DNHE).
- * Etudier et expérimenter (et diffuser) des techniques et des matériels, adaptés et à moindre coût, maîtrisables par les entrepreneurs maliens tels que : le havage mécanique pour les puits, le forage au battage dans les terrains tendres, les pointes filtrantes dans les terrains alluviaux, la fabrication des gabions, les latrines simplifiés ou améliorées, etc...
- * Former les entrepreneurs et artisans, en particulier à la gestion technique et financière (p. ex. Centre des Métiers de l'Eau Abidjan).
- * Proposer des mesures de soutien au démarrage de ces entreprises par un système de crédit et des subventions.

Le projet pourrait être confié à la Direction Nationale des Industries du ministère de l'Industrie, de l'Hydraulique et de l'Energie, en collaboration avec la DNHE, la DNOP et la DNGR.

Le Bureau International du Travail (BIT) pourrait apporter son concours pour l'identification et le contenu plus précis de ce projet.

En première analyse, l'apport extérieur pourrait consister en :

- une phase préliminaire de formulation sous-traitée pour 20 millions de F.CFA,
- des services de consultants spécialisés,
- des sous-contrats pour l'expérimentation,
- des fonds pour l'aide au démarrage d'entreprises dans certains secteurs,
- des équipements et des moyens de fonctionnement.

L'ordre de grandeur du budget de ce projet serait de 700 millions de F.CFA dont 500 millions de F.CFA de contribution extérieure (US \$ 1,7 million).

APPUI A L'HYDRAULIQUE PASTORALE (1992-1993)

a) Justification

L'analyse de la situation actuelle de l'hydraulique pastorale montre que la création de nouveaux points d'eau destinés à l'abreuvement du bétail n'a pas toujours répondu aux souhaits et aux besoins des éleveurs. Or une réparation et une gestion rationnelles des points d'eau sont une condition essentielle pour l'exploitation des ressources fourragères disponibles, tant en zone sahélo-soudanienne qu'en zone soudanienne ou saharienne.

Cependant, le choix, la conception et l'implantation de nouveaux points d'eau supposent une connaissance précise de toutes les contraintes en jeu, nombreuses et réciproques: techniques (ressources en eau, moyens d'exhaure), sociales (organisation pastorale, relations entre agriculteurs et éleveurs), juridiques (régime de propriété des pâturages, usages divers), économiques (coût de l'eau, commercialisation du bétail, Une telle connaissance ne peut provenir que d'enquêtes directes sur le terrain.

b) Objectifs

Les objectifs de ce projet de 2 ans sera de rassembler tous les éléments d'information nécessaires à un aménagement du territoire en matière d'hydraulique pastorale et en particulier à l'élaboration d'un programme de création de nouveaux points d'eaux pastoraux dans le cadre de la planification du secteur Elevage.

c) Stratégie et principaux résultats attendus

* L'exécution d'enquêtes systématiques doit être préparée par une mission générale de reconnaissance et d'organisation des enquêtes à mener sur le terrain.

Les résultats attendus de cette mission d'identification sont un programme d'enquêtes, une définition détaillée des moyens correspondants, la détermination des termes de référence des participants (nationaux et internationaux) à l'exécution de ce programme.

* Sur cette base, les enquêtes seront réalisées simultanément dans les diverses zones retenues.

Les résultats attendus de ces enquêtes sont d'une manière générale :

- une description des conditions actuelles d'exploitation des points d'eau et des contraintes locales à prendre en compte pour l'élaboration d'un programme de travaux,
- un programme d'exécution de nouveaux points d'eau comprenant, avec les justifications nécessaires, les mesures (techniques, juridiques, organisationnelles, socio-économiques et d'accompagnement) propres à en assurer l'utilisation effective et la prise en charge par les bénéficiaires.

La mission préliminaire préparatoire sera composée d'une équipe comprenant trois experts internationaux : un hydrogéologue couvrant aussi, à ce stade, le domaine de l'aménagement des eaux de surface non pérennes, un pastoraliste et un socio-économiste (4 h/m au total).

Les enquêtes seront exécutées par des équipes nationale (enquêtes et superviseurs) sous la direction d'un consultant. Les enquêteurs seront recrutés et formés sur place dans les diverses zones à étudier. L'exploitation des enquêtes et l'élaboration des programmes seront confiées à une équipe pluridisciplinaire de consultants internationaux et nationaux. L'équipe internationale comprendra un hydrogéologue, un ingénieur de génie rural, un socio-économiste et un pastoraliste (12 h/m environ au total).

Le projet comprendra donc :

- 16 h/m de consultants internationaux et nationaux,
- un ou plusieurs sous-contrats d'enquêtes

pour un coût global estimé à 100 millions de F.CFA d'assistance externe (US \$ 330.000 environ) à réajuster selon les résultats de la mission préparatoire.

CONCEPTION ET CONSTRUCTION DE SIX OUVRAGES TYPES D'AMENAGEMENT DES EAUX DE SURFACE NON PERENNES (1) (1991-1994)

a) Justification

Environ 200 petits aménagements à but hydro-agricole (et pastoral) à partir des eaux de surface non pérennes ont été recensés (Pays Dogon, Région de Sikasso, Cercle de Kita, Sahel occidental). Nombre d'entre eux, étudiés et construits de façon rudimentaire et sans contrôle et suivi de l'Administration, souvent par des ONG avec participation villageoise, sont aujourd'hui en mauvais état, hors d'usage ou ne fonctionnent pas (non remplissage, fuites).

Le présent projet se propose donc, avant de se lancer dans un programme de réhabilitation de ces ouvrages et de construction de nouveauxaménagements, de montrer comment procéder à l'avenir et de renforcer la capacité technique des ingénieurs et techniciens opérant au Mali, avec la perspective d'une privatisation à moyen terme.

b) Objectifs

Ce projet d'un peu plus de 4 ans a pour objectif de former sur place et sur le tas des ingénieurs et techniciens maliens de la DNGR, de l'OTER et de la DNHE ainsi que d'ONG dans le cadre de l'étude et de la construction, selon les règles de l'art, de 6 principaux types d'ouvrage qui pourraient permettre de développer l'irrigation et l'élevage à partir des eaux de surface non pérennes.

c) Stratégie et principaux résultats attendus

Ce projet aura les activités suivantes :

- * Etudes de conception de :
 - . 1 surcreusement de mare dans le Cercle de Banamba,
 - . 1 système de 5 diguettes d'épandage de crue en bas-fonds rizicoles dans le Cercle de Sikasso,
 - . 1 ouvrage flexible en gabions dans le Cercle de Kita,
 - . 1 digue en terre homogène (ouvrage de régulation),
 - . 1 digue filtrante en maçonnerie de pierres sèches,
 - . 1 barrage souterrain dans le Cercle de Kidal.
- * Exécution de ces 6 types d'ouvrages en haute intensité de main-d'oeuvre (HIMO), sauf la digue en terre homogène.
- * Formation sur place et en service, organisation de séminaires et visites de chantiers similaires dans les pays voisins.

⁽¹⁾ Ce projet est détaillé dans le rapport [SDM/ENP/5]

Le Gouvernement (DNGR, OTER et DNHE) mettra à la disposition du projet :

- du personnel: 10 ingénieurs, 10 techniciens et 15 agents techniques, pour un total d'environ 1.500 h/m,
- des locaux,
- du matériel de chantier,
- des frais de fonctionnement (y compris paiement des villageois participants), pour un montant de 120 millions de F.CFA.

Les apports extérieurs consisteront en :

- du personnel international : 2 experts et 4 consultants (100 h/m),
- des frais de formation en service et de séminaires,
- des véhicules, des matériaux de construction, du petit matériel,
- des frais de fonctionnement (y compris remise en état du matériel TP).

Le montant total des apports extérieurs sera de 330 millions de F.CFA (US \$ 1.100.000).

Le coût total du projet s'élèvera donc à 450 millions de F.CFA.

ETUDE DES POSSIBILITES DE MISE EN VALEUR DES RESSOURCES EN EAU DE SURFACE NON PERENNE (1) (1991-1994)

a) Justification

Les aléas climatiques inciteront de plus en plus les agriculteurs du Mali qui n'ont pas accès aux eaux des grands fleuves à demander la réalisation d'aménagements hydroagricoles (et pastoraux) fiables pour garantir le développement de leurs terroirs villageois à partir des ressources en eaux non pérennes. Or, malgré la construction d'environ 200 aménagements au cours des dernières années, il n'y a pas actuellement assez de données de base sur les régimes hydrologiques, la qualité des sols, les contraintes techniques et socio-économiques pour mettre en eouvre de façon efficace des programmes ayant suffisamment de chances de réussite et de rentabilité socio-économique.

Ce projet est complémentaire du précédent (A7) et devrait être réalisé simultanément, les deux projets pouvant même être éventuellement regroupés en un seul projet.

b) Objectifs

L'objectif de ce projet de 4 ans est de préparer la mise en oeuvre du Schéma Directeur concernant les études de petits bassins versants et la conception, la programmation et la réalisation de petits aménagements sur les eaux de surface non pérennes selon des normes adaptées au contexte hydrogéologique, géologique, géomorphologique, pédologique et socio-économique, en vue de leur utilisation profitable aux agriculteurs et aux éleveurs.

c) Stratégie et principaux résultats attendus

Ce projet aura pour résultats principaux :

- * Un inventaire national des ouvrages de retenue et des aménagements hydroagricoles et pastoraux sur les eaux de surface non pérennes.
- * Des études hydrologiques sur un réseau de bassins versants représentatifs et leur équipement en appareils de mesures de manière à constituer un réseau national d'observation.
- * Une étude sur l'utilisation de l'eau des retenues par les agriculteurs et les éleveurs.
- * L'étude et la conception de 24 ouvrages hydrauliques dans des zones d'expérimentation.
- * L'élaboration d'un programme de réalisations incluant le suivi des travaux en vue de la recherche de financements.

- * La formation sur place des cadres nationaux et du personnel des ONG.
- * Des bourses de formation à l'étranger.
- * La mise en place d'une cellule pluridisciplinaire de conception et de maîtrise d'oeuvre des aménagements d'eaux de surface non pérennes.

Ce projet sera exécuté par une cellule multidisciplinaire (DNHE, DNGR, DNE, DNA) dans le cadre du Comité Consultatif de l'Eau, avec l'assistance d'une Agence de coopération technique externe.

Le Gouvernement mettra à la disposition du Projet :

- du personnel: 4 ingénieurs, 6 techniciens et 6 agents (750 h/m),
- des locaux,
- de l'équipement topographique et de bureau,
- des frais de fonctionnement,

pour un montant total de 100 millions de F.CFA.

L'apport extérieur consistera en :

- du personnel: 3 experts et 4 consultants (150 h/m),
- de la formation sur place et à l'étranger,
- des équipements (matériel hydrologique, topographique et de mécanique des sols, véhicules, appareils de mesure),
- des frais de fonctionnement,

pour un montant total de 490 millions de F.CFA (US \$ 1.650.000 env.).

Le coût total du projet sera d'environ 590 millions de F.CFA.

DIAGNOSTIC ET PLANIFICATION SECTORIELLE DE L'IRRIGATION A PARTIR DES EAUX SOUTERRAINES (1992-1994)

a) Justification

Depuis 1984, le pourcentage élevé de forages ayant mis à jour des débits exploitables supérieurs à 10 m³/h dans les aquifères fissurés a permis d'envisager de développer l'irrigation à partir des eaux souterraines. Celle-ci ne s'est développée en fait que très lentement; il s'agit surtout de micro-irrigations villageoises par arrosage à partir de pompes manuelles dans certaines zones, de quelques petits périmètres d'irrigation villageois (PPIV) de 1 à 2 hectares à partir de pompes solaires et de quelques fermes privées au voisinage des grandes villes à partir de pompes diésel. Cette situation est dûe d'une part à l'absence de modèles valables à proposer aux villageois, d'autre part au manque de promotion donnée à ces nouvelles possibilités. En ce qui concerne la première contrainte, elle devrait être levée par le projet pilote "Création de petits périmètres irrigués villageois" financé par le PNUD pour US \$ 2,2 millions et exécuté par l'OPS.

Il reste à définir, en fonction des résultats de ce projet et des autres expériences en cours au Mali, une politique et une stratégie ayant pour but de promouvoir la multiplication de ces PPIV selon des modèles éprouvés.

b) Objectifs

L'objectif de ce projet de 2 ans 1/2 est de :

- définir les conditions du développement de l'irrigation à partir des eaux souterraines,
- établir une programmation à moyen terme de ce secteur jusqu'en 2001, dans le cadre du Schéma Directeur.

c) Stratégie et principaux résultats attendus

Ce projet qui collaborera étroitement avec le projet pilote PNUD/OPS "Création de PPIV" pourrait être également regroupé avec les projets A7 et A8. Les résultats attendus sont :

- * Inventaire exhaustif des sites potentiels de création de PPIV sur l'ensemble du territoire.
- * Equipement et suivi d'environ 30 sites de petites irrigations de différentes tailles et de divers types représentatifs sur l'ensemble du pays: par exemple, 5 sites à partir de pompes manuelles à gros débit sur forages ou puits, 5 sites de sédentarisation du projet Mali NE, 5 sites à partir de pompes solaires (y compris les petits projets d'irrigation FED dans la région de Mopti), 5 sites à partir de pompes à traction animale (y compris celles du projet PNUD/OPS), 5 sites à partir de pompes diésel (fermes privées autour de Bamako et Ségou, notamment). On pourra y ajouter des sites d'éventuelles exploitations mixtes "Adductions d'eau sommaires et Irrigation villageoise" dans certains Centres rurauxou semi-urbains.

- * Etude des cultures et rotations pratiquées, des modalités et doses d'irrigation, des rendements, de la commercialisation, de l'organisation de la culture irriguée, des comptes d'exploitation.
- * Collecte et étude de tous les documents relatifs à la petite irrigation : études pédologiques, hydrogéologiques, techniques et socio-économiques.
- * Exécution d'enquêtes détaillées sur le terrain, en particulier :
 - sur l'aménagement des terroirs villageois (au minimum 5 terroirs par Région répartis selon les zones homogènes du Plan) en liaison avec la Direction Nationale du Génie Rural et l'Institut d'Economie Rurale,
 - sur l'irrigation péri-urbaine,
 - sur la consommation et la commercialisation des productions et en particulier des fruits et légumes, en zone urbaine et rurale.
- * A partir des résultats de ces études, observations et enquêtes, élaboration d'un Schéma Directeur Sectoriel de l'irrigation à partir des eaux souterraines faisant le diagnostic de la situation actuelle et de ses contraintes, recommandant les stratégies à appliquer sur les plans technique, financier et organisationnel (crédit, service de fourniture d'intrants,...). Ce Schéma devra programmer une enveloppe de crédits (et de subventions) pour la réalisation d'environ 2500 ha de PPIV durant le plan 97-2001 (voir Fiche B21).

Le Gouvernement mettra à la disposition du projet :

- du personnel: 2 ingénieurs, 10 adjoints techniques et du personnel d'appui pour un total de 300 h/m,
- des locaux,
- des équipements,
- des frais de fonctionnement,

pour un montant de 50 millions de F.CFA.

Les apports extérieurs consisteront en :

- 2 experts et 4 consultants pour un total de 70 h/m,
- des sous-traitances pour les enquêtes,
- des équipements (véhicules),
- des frais de fonctionnement,

pour un montant de 300 millions de F.CFA (US \$ 1 million environ).

Le coût total du projet sera de l'ordre de 350 millions de F.CFA.

PLANIFICATION DE LA MISE EN VALEUR DES RESSOURCES EN EAU DE SURFACE PERENNE POUR LE DEVELOPPEMENT DE L'HYDRAULIQUE AGRICOLE (1992-1993)

a) Justification

En 1984, une étude sur les "options et investissements prioritaires dans le domaine de l'irrigation "concluait que ressources en eau pérennes des grands fleuves ne constitueraient pas, globalement, une contrainte majeure à la mise en valeur des 500.000 hectares de terres irrigables identifiées qui assureraient l'autosuffisance alimentaire du Mali.

Depuis lors, la dégradation continue des conditions climatiques et hydrologiques s'est traduite en particulier par un retard et une baisse du niveau des pointes de crue rendant aléatoire l'irrigation d'un certain nombre de cuvettes autrefois régulièrement atteintes par les crues et amenant une multiplication des prélèvements par pompage sur les fleuves. Ce problème est aggravé par la nécessité de réserver une partie de plus en plus élevée des écoulements afin de couvrir les besoins en électricité à partir des aménagements hydrauliques dans les hauts bassins des fleuves Niger et Sénégal et en eau potable au niveau des villes alimentées à partir des fleuves, Bamako notamment.

b) Objectifs

L'objectif du projet est de repenser la planification de l'utilisation des eaux permanentes des grands fleuves du Mali afin de concilier et de rendre cohérents d'une part les données actuelles et prévisibles sur leurs écoulements, d'autre part les programmes régionaux de réhabilitation et de développement des superficies irriguées au Mali à partir de ces fleuves.

c) Stratégie et principaux résultats attendus

La stratégie consistera à mener, durant les deux années du projet, les activités suivantes :

- un approfondissement des études sur l'adéquation Ressources/Besoins par biefs ou sous-bassins versants, basé sur les données hydrométérologiques, les prévisions des niveaux d'écoulement et une révision des normes de consommation et des calendriers des prélèvements. Cette activité se traduira par une meilleure gestion de la ressource, notamment au niveau des barrages, et par une proposition de différents scénarios de prélèvements en fonction de l'évolution des caractéristiques hydrologiques;
- l'élaboration des scénarios correspondant de production agricole et tendant à une meilleure valorisation des aménagements existants ou futurs en fonction de leurs caractéristiques et de leur localisation;
- la détermination, selon les résultats des activités précédentes, des investissements hydro-agricoles prioritaires durant les 10 prochaines années tendant à assurer la sécurité alimentaire pour toute la population du Mali;
- l'adoption et la mise en œuvre de mesures institutionnelles (notamment en matière de coordination), administratives et financières susceptibles de faciliter la réussite de la politique hydro-agricole du Mali.

Le Gouvernement, par l'intermédiaire de la DNGR et de la DNHE en particulier, mettra à la disposition du projet :

- du personnel: 4 ingénieurs, 4 techniciens et des agents techniques pour un total de 200 H/M,
- des locaux et leur équipement,
- les frais de fonctionnement du personnel,

pour un montant total de 50 millions de F.CFA.

L'apport extérieur consistera en :

- du personnel : 4 experts et 4 consultants pour 100 H/M,
- un sous-contrat pour l'utilisation du modèle mathématique du fleuve Niger,
- des équipements (informatique notamment),
- les frais de fonctionnement,

pour un montant total de 450 millions de F.CFA (US \$ 1,5 million).

Le budget total du projet sera donc de 500 millions de F.CFA.

ETUDE INTEGREE ET MULTISECTORIELLE DU DELTA INTERIEUR DU FLEUVE NIGER (1992-1993)

a) Justification

Le bilan hydrologique du delta intérieur du fleuve Niger (environ 30.000 km²) montre qu'en année moyenne, 1.000 m³/s (soit 30 milliards de m³ d'eau par an ou l'équivalent de 2 m de hauteur d'eau) "disparaissent" entre l'entrée et la sortie du delta.

Une grande partie de cette eau est soit perdue par évaporation sur les énormes superficies d'eau libre représentée par les lacs permanents ou semi-permanents (15.000 km², soit près de la moitié de la superficie du delta), soit reprise par l'évapotranspiration du couvert végétal et des cultures irriguées et de décrue. Ces pertes liées à la superficie inondée varient fortement selon les années (17 milliards de m³ durant l'année humide 1969). L'étude des eaux souterraines dans cette zone a montré que l'infiltration des eaux de surface vers les nappes était relativement négligeable en comparaison des pertes par évaporation.

Les productions de biomasse végétale et animale (ressources piscicoles notamment) ainsi que leur consommation par les hommes et le bétail sont étroitement dépendantes de l'extension des zones inondées commandée par l'ampleur de la crue. Tous ces paramètres sont encore mal connus.

b) Objectifs

L'objectif à long terme du projet est de diminuer les pertes par évaporation en utilisant au mieux l'eau de surface pour augmenter la production de biomasse végétale et animale selon 4 grands axes de développement:

- l'élévage par le contrôle et la régénération des bourgoutières et la gestion des pâturages et des points d'eau en bordure des zones d'inondation,
- la pisciculture par une extension et une gestion de la production,
- l'agriculture irriguée par une extension des périmètres, notamment de riziculture,
- l'agriculture de décrue, notamment en aval du delta.

c) Stratégie et principaux résultats attendus

Le projet d'une durée de deux ans vise à mettre en place un dispositif de suivi de l'extension des zones inondées du delta intérieur du Niger, de l'évaporation, de la qualité des eaux et de l'infiltration à partir du traitement des images satellitaires appuyé par des mesures au sol.

La stratégie consiste à établir, à partir du bilan hydrologique des entrées/sorties (débit et forme de la crue notamment), les relations entre la propagation de la crue et les différents éléments induits: superficies inondées et évaporation, hauteurs et durées d'inondation, salinisation, recharge des nappes, production de biomasse, prélèvements pour l'irrigation, évolution de l'évaporation.

Le résultat final sera l'élaboration d'un schéma directeur d'aménagement intégré et multisectoriel du delta intérieur du fleuve Niger dans le cadre duquel chaque utilisateur pourra établir, en coordination avec tous les secteurs concernés, la planification des actions à mener dans son domaine de compétence.

d) Moyens et budgets

Le Gouvernement, représenté par la DNHE, mettra à la disposition du projet :

- du personnel: 3 cadres supérieurs (hydrologues et hydrogéologues), 5 techniciens et du personnel d'appui pour un total de 430 H/M,
- des locaux : 6 bureaux et 1 atelier,
- des équipements hydrométéorologiques,
- le fonctionnement des opérations de terrains et les analyses chimiques, pour un montant de l'ordre de 50 millions de F.CFA.

L'agence de coopération externe fournira:

- du personnel: 1 expert hydrologue/hydrogéologue et divers consultants pour un total de 36 H/M.
- des sous-traitances pour la formation et le traitement des images satellitaires et les enquêtes sur le terrain,
- de la formation à l'étranger (2 bourses de 12 mois chacune),
- des équipements durables et consommables (atelier de traitement des images satellitaires, véhicules, appareils de mesure),
- le fonctionnement,

pour un montant de l'ordre de 200 millions de F.CFA (US \$ 600.000).

Le montant total du budget du projet sera donc de 250.000 millions de F.CFA.

VULGARISATION DES TECHNIQUES D'EPANDAGE DE CRUE EN ZONE SAHELIENNE (1) (1992-1995)

a) Justification

Une part importante des eaux de ruissellement est perdue à cause de leur caractère torrentiel qui ne permet pas d'assurer au sol l'humidité nécessaire à la poussée des plantes pendant leur période de maturation.

Les essais d'épandage des ruissellement menés en Afrique Sahélienne tels qu'à Kanguessanou au Mali (projet CEE/GTZ) et à No-Rounou/Bam au Burkina Faso (projet PA/CILSS) ont démontré que l'application de techniques d'épandage simples à la portée des paysans et facilement reproductibles permettraient d'une part de restaurer les sols, d'autre part d'améliorer, jusqu'à doubler, les rendements.

b) Objectifs

Ce projet de 3 ans 1/2 vise à améliorer et sécuriser la production céréalière en zone sahélienne de pluviométrie comprise entre 400 et 600 mm par an.

c) Stratégie et principaux résultats attendus

Le projet aura deux axes d'activités, l'un vers la formation d'encadreurs (agents de développement rural) pour l'animation et l'encadrement villageois, l'autre vers la réalisation d'aménagements dans des villages sélectionnés pour tester et démontrer la validité des techniques proposées.

Les résultat attendus sont des champs de culture aménagés en zone d'épandage de crue à raison de 10 hectares en moyenne par village et sur environ une trentaine de villages. Un résultat corollaire du projet sera la recharge des aquifères par le ralentissement du ruissellement et sa répartition sur une plus grande surface.

Les activités porteront sur :

- la sélection des villages cibles,
- la formation d'encadreurs et responsables villageois,
- la mise en place de dispositifs techniques,
- l'évaluation de l'impact du projet,
- la mise en place des conditions de reproductibilité à grande échelle des résultats du projet.

⁽¹⁾ Cette fiche a été préparée par la Division Land and Water de la FAO (P. Pallas)

Le Gouvernement fournira:

- du personnel : 1 ingénieur, 10 encadreurs et du personnel d'appui, pour un total de 625 h/m,
- des locaux,
- des équipements de bureau,
- des frais de fonctionnement,

pour un montant de 40 millions de F.CFA.

Les apports extérieurs fourniront :

- du personnel: 1 expert et des consultants, pour 72 h/m au total,
- des sous-traitances pour les suivis et évaluations,
- des bourses de formation,
- des équipements (véhicules et petits matériels),
- des frais de fonctionnement,

pour un montant de 300 millions de F.CFA (US \$ 1 million environ).

Le coût total du projet est estimé a 340 millions de F.CFA.

FICHE DE PROGRAMME B5.A

HYDRAULIQUE VILLAGEOISE ET ASSAINISSEMENT RURAL AU NORD-OUEST DE LA REGION DE MOPTI (1992-1996)

a) Justification

Dans les Cercles de Mopti et de Djenné (à forte densité de population agricole) et dans ceux de Ténenkou et de Youvarou (à forte densité de bétail), seulement 11 % des 760 villages de moins de 2.000 habitants (population totale en l'an 2001 : environ 390.000 habitants) ont bénéficié jusqu'ici de programmes d'hydraulique villageoise. La population s'alimente donc principalement aux puits traditionnels et aux eaux superficielles du delta intérieur du Niger. Aussi est-ce la zone où la morbidité dûe aux maladies d'origine hydrique est la plus élevée du Mali. Les aquifères sont en général contenus dans des terrains tendres (argiles, sables et limons alluvionnaires) et la profondeur jusqu'à l'eau est très faible dans le delta intérieur et élevée dans une partie des Cercles de Ténenkou et de Youvarou. Les puits, les forages au battage et les pointes filtrantes (qui seront expérimentées dans le cadre du projet A5) se révéleront sans doute des techniques à utiliser car moins coûteuses et tout aussi efficaces.

b) Objectifs

Dans le cadre des programmes régionaux d'hydraulique villageoise et d'assainissement rural, le Projet visera à compléter l'équipement de 84 villages déjà partiellement desservis et à équiper les 676 villages qui n'ont encore bénéficié d'aucun équipement moderne, dans les Cercles de Djenné, Mopti, Ténenkou et Youvarou.

c) Stratégie et principaux résultats attendus

- * Etude de préparation pour préciser, en accord avec les populations des villages, le nombre et les différents types d'ouvrages à réaliser, les modalités de participation et le calendrier d'intervention des différentes équipes.
- * Amélioration de 760 puits traditionnels et construction de 76 nouveaux puits traditionnels améliorés.
- Choix par géophysique des sites définitifs de forages et puits.
- * Construction d'environ 170 puits modernes de 20 à 30 m de profondeur.
- * Réalisation de 800 forages productifs tubés en 4" 1/2.
- * Installation de 800 pompes à motricité humaine (et réhabilitation d'une vingtaine de pompes), y compris formation des artisans-réparateurs et organisation du réseau de distribution des pièces détachées.
- * Education sanitaire et promotion d'ouvrages simples d'assainissement.
- * Suivi et contrôle des travaux, réunions de sensibilisation et de formation à la gestion dans les 760 villages.

Le Gouvernement mettra à la disposition du Projet :

- des cadres et techniciens (y compris pour la géophysique),
- une partie des frais de fonctionnement.

La population participera en nature, en travail et en argent selon des modalités à définir.

Les apports extérieurs consisteront en :

- du personnel de préparation, de suivi et de contrôle,
- des sous-contrats pour :
 - les études, les enquêtes, la sensibilisation et l'animation (bureaux d'étude mixtes ou maliens),
 - . l'amélioration et la création des puits traditionnels et les travaux d'assainissement (petites entreprises maliennes locales),
 - . les puits, les forages et les pompes (appel d'offres international auquel prendront part aussi des entreprises publiques ou privées maliennes).
- des équipements complémentaires et leur fonctionnement.

Le coût total du projet est évalué à 6,58 milliards de F.CFA.

Avec deux foreuses à cable et une foreuse pour la mise en place des pointes filtrantes et 7 équipes de puisatiers pour les puits modernes, le projet devrait réaliser ses objectifs en 5 ans, sur le premier Plan 1992-1996.

FICHE DE PROGRAMME B12.A

ADDUCTIONS D'EAU ET ASSAINISSEMENT SOMMAIRES DANS LES CENTRES RURAUX ET SEMI-URBAINS DE LA REGION DE MOPTI (1992-1996)

a) Justification

L'Etat a décidé de doter les Centres ruraux (de 2.000 à 5.000 hab) et semi-urbains (de 5.000 à 10.000 hab), et les chefs-lieux d'Arrondissement de moins de 2.000 hab d'infrastructures sociales adéquates et en particulier d'adductions d'eau sommaires (AES) et d'ouvrages d'assainissement. Dans la 5e Région de Mopti, sur 95 Centres, seulement 3 (Bandiagara, Koro et Hombori) sont actuellement équipés d'un système d'AES. Les autres Centres ne disposent pour l'instant que de forages équipés de pompes manuelles, pour une population qui atteindra 306.000 personnes en 2001 avec un taux de couverture en points d'eau modernes (7,5 % de la population) inférieur à celui des villages de la Région de Mopti (15 %).

b) Objectifs

Construire d'ici 1996 un système d'adduction d'eau sommaire et des systèmes simples d'assainissement dans 40 à 45 Centres ruraux et semi-urbains actuellement non équipés de la Région de Mopti.

c) Stratégie et principaux résultats attendus

Les activités suivantes seront menées :

- après des enquêtes socio-économiques de détail (en plus de celles prévues dans la fiche de projet A2), préparation des avant-projets d'exécution,
- vérification du débit et de la possibilité pratique d'utiliser les forages existants (28 centres disposent de forages à débit supérieur à 5 m³/h),
- recherche par géophysique, sondages de reconnaissance (à aléser si essai de débit positif) dans les autres Centres,
- commande et installation de pompes et groupes électrogènes ou solaires adéquats (en principe un certain nombre de pompes solaires seront installées dans le cadre du projet régional solaire du FED),
- constructions de génie civil : abri pour pompe, réservoir 30 m³, réseau de distribution simplifié, bornes fontaines,
- travaux d'assainissement (avec la population),
- suivi et contrôle des travaux, sensibilisation, animation, mise en place et formation des comités de gestion.

Le Gouvernement mettra à la disposition du Projet :

- des cadres et techniciens (y compris pour la géophysique),
- une partie des frais de fonctionnement.

La population bénéficiaire fournira des prestations en nature, du travail rémunéré et remboursera (sur la vente de l'eau) une partie de l'investissement, suivant des règles à fixer par un contrat.

L'apport extérieur consistera en :

- du personnel expatrié pour les études, le suivi et le contrôle des travaux,
- des sous-contrats pour :
 - . les études, la sensibilisation et l'animation (bureaux d'étude mixtes ou maliens),
 - . les forages,
 - . l'importation et l'installation des pompes,
 - . les travaux de génie civil;
- des équipements complémentaires et leur fonctionnement.

Le coût global du projet est évalué à 1,34 milliard de F.CFA.

A raison de 9 à 10 centres par an, le projet devrait atteindre ses objectifs en 4 à 5 ans, soit sur le premier Plan quinquennal 1992-1996.

FICHE DE PROGRAMME B17

AMENAGEMENTS D'HYDRAULIQUE PASTORALE EN ZONE SAHELIENNE ET SAHARIENNE (1992-2001)

a) Justification

Les importantes ressources fourragères du Mali ne sont que très partiellement exploitées dans les zones sahéliennes et sahariennes, souvent faute de points d'eau pérennes. Il est donc nécessaire, dans ces zones particulièrement sujettes aux aléas climatiques, de compléter le réseau existant de points d'eau en vue de sécuriser les activités pastorales et de freiner l'exode des troupeaux vers le Sud. Les rares études disponibles seront à compléter par des enquêtes détaillées en relation avec le projet proposé dans la fiche de projet A6. Il apparaît d'ores et déjà que de nouveaux points d'eau pastoraux devront être réalisés dans la Région de Kayes, dans le nord des régions de Koulikoro et de Ségou, dans le Cercle de Kidal (Région de Gao) ainsi que dans le sud et le sud-ouest de la Région de Tombouctou.

b) Objectifs

Compléter le réseau existant de points d'eau pastoraux en zone sahélienne et saharienne en vue d'améliorer l'utilisation et la gestion des pâturages disponibles et donc la quantité et la qualité de bétail dans ces zones.

c) Stratégie et principaux résultats attendus

Les enquêtes réalisées dans le cadre du projet A6 et l'élaboration d'un programme de travaux correspondant auront déterminé, avant l'exécution des ouvrages, les conditions préliminaires à réaliser : modalités de participation des populations intéressées, organisation de l'utilisation et de l'entretien des points d'eau, constitution d'association d'éleveurs, réglementation de l'utilisation des pâturages, levée des contraintes foncières.

Les résultats du projet comprendront notamment :

- * Les études d'exécution des ouvrages, d'organisation et de planification des chantiers, en vue de l'attribution des travaux.
- * L'exécution des ouvrages (en sous-traitance d'entreprises maliennes).
- * Le suivi et le contrôle technique des travaux après la mise en service des ouvrages.
- * Au plan zootechnique, la fourniture de 6.500 m³/jour supplémentaires d'eau en saison chaude et sèche pouvant abreuver environ 250.000 UBT supplémentaires.
- * Au plan technique, l'exécution d'ouvrages conformes aux normes préalablement définies.

* Au plan socio-économique, la mise en exploitation des ouvrages conformément aux dispositions prévues lors de leur conception et, en particulier, l'utilisation effective des ouvrages, leur ouverture à tous les bénéficiaires prévus, l'application des modalités de gestion et de participation retenues (travail, paiement de l'eau).

Lés travaux à réaliser seront les suivants :

- * Dans le sud et le nord de la Région de Kayes :
 - . Création de 50 points d'eau pastoraux,
 - . Surcreusement de 10 mares,
 - . Création de 100 petits barrages.
- * Dans le nord des Régions de Koulikoro et de Ségou :
 - · équipement de 15 forages existants par des motopompes,
 - création de 100 points d'eau pastoraux : puits à exhaure animale ou forages avec pompes à motricité humaine,
 - . surcreusement de 10 mares.
- * Dans le Cercle de Kidal:
 - 50 barrages souterrains, permettant le creusement de puisards (pouvant être également utilisés pour la création d'oasis),
 - · création de 20 mares artificielles,
 - . réalisation de 50 impluviums ou compluviums.
- * Dans le sud et le sud-ouest de la Région de Tombouctou (nord de Goundam et Sud Azaouad) :
 - . 50 puits-citernes sur des forages existants ou à réaliser,
 - 40 mares artificielles.

d) Moyens et budget

Le programme proposé couvre les 2 Plans 1992-1996 et 1997-2001. Il nécessitera globalement :

- des moyens en personnel national (cadres, techniciens et personnel d'appui) et en personnel international (experts et consultants spécialisés).

On fera le plus possible appel à la main-d'oeuvre locale pour l'exécution des ouvrages à haute intensité de main-d'oeuvre.

- des matériels de travaux publics (pelles hydrauliques, porte-char, camions, compacteurs, citernes à eau, brise béton, scrapers, grues de puisatier, équipements de forage) et matériel annexe (topographie, laboratoire). Pour le matériel de travaux publics, on fera appel aux services de l'OTER (Opération de Travaux d'Equipements Ruraux/DNGR),
- des équipements : motopompes et groupes pour puits et forages, des véhicules de liaison, des petits matériels....,
- des frais de fonctionnement.

1.000

1.320

320

Le budget (y compris les études d'exécution) est estimé ainsi (en millions de F.CFA):

1 - Renforcement de l'hydraulique pastorale dans le sud et le nord de la Région de Kayes et dans le nord des Régions de Koulikoro et Ségou (Cercles de Nara, et Nord-Niono): - création de 150 puits à exhaure animale (ou forages et 2.890 pompes manuelles) - équipement de 20 forages existants par motopompe 250 - surcreusement de 20 mares 250 - création de 200 petits barrages 2.000 - création de 100 mares artificielles de 1.000 m³ 1.500 6.890 Sous-total 1 2 - Hydraulique pastorale dans le Cercle de Kidal (Région de Gao): - 50 barrages souterrains (après expérimentation) permettant 400 le creusement de puisards - 20 mares artificielles de 2.000 m³ 320 - 50 impluviums ou compluviums 150 Sous-total 2 870 3 - Hydraulique pastorale N. Goundam - S. Azaouad (Région de Tombouctou)

Le montant total du projet sera donc de 9,08 milliards de F.CFA (dont 6 % pour les études d'exécution, le suivi et le contrôle des travaux soit 540 millions de F.CFA).

- 50 puits citernes

Sous-total 3

- 20 mares artificielles de 1000 m³

FICHE DE PROGRAMME B18

AMENAGEMENTS D'HYDRAULIQUE PASTORALE DANS LES ZONES A FORTE DENSITE ANIMALE DES REGIONS DE SIKASSO ET MOPTI (1992-2001)

a) Justification

Dans les zones à forte densité animale des 3e et 5e Régions, les disponibilités en eau n'ont pas encore constitué un facteur limitant malgré l'augmentation du bétail dû à l'exode provoqué par la sécheresse. Cependant, l'amélioration prévisible du niveau de santé animale va augmenter sensiblement le volume des troupeaux et donc les besoins en eau. Pour les pâturages situés loin des cours d'eau permanents, il sera nécessaire de recourir à l'exploitation des eaux de surface non pérennes qui présentent souvent l'avantage de fournir de l'eau à un coût relativement peu élevé, mais également à l'exploitation des eaux souterraines de coût plus élevé.

b) Objectifs

Compléter le réseau de points d'eau pastoraux dans les zones à forte densité animale en vue d'améliorer l'utilisation et la gestion des pâturages et de permettre ainsi le développement du cheptel.

c) Stratégie et principaux résultats attendus

Les enquêtes réalisées dans le cadre du projet A6 et l'élaboration du programme des travaux correspondants auront déterminé les conditions préliminaires à réaliser : modalités de participation des populations intéressées, organisation de l'utilisation et de l'entretien des points d'eau, constitution d'associations d'éleveurs, réglementation de l'utilisation des pâturages.

Les résultats du projet comprendront notamment :

- Les études d'exécution des ouvrages, d'organisation et de planification des chantiers en vue de l'attribution des travaux.
- * L'exécution des ouvrages (en sous-traitance d'entreprises maliennes).
- * Le suivi et le contrôle technique des travaux après la mise en service des ouvrages.
- * Au plan zootechnique, la fourniture de 6.500 m³/jour supplémentaires d'eau en saison chaude et sèche pouvant abreuver environ 240.000 UBT supplémentaires.
- * Au plan technique, l'exécution d'ouvrages conformes aux normes préalablement définies.
- * Au plan socio-économique, la mise en exploitation des ouvrages conformément aux dispositions prévues lors de leur conception et, en particulier, l'utilisation effective des ouvrages, leur ouverture à tous les bénéficiaires prévus, l'application des modalités de gestion et de participation retenues (travail, paiement de l'eau).

Les travaux à réaliser seront les suivants :

- * Dans la Région de Sikasso :
 - . 200 petits barrages dans les Cercles de Koutiala, Sikasso, Bougouni et Kolondiéba.
 - 60 mares artificielles dans la zone de réhabilitation de la route nationale A7 (Bougouni-Sikasso).
- * Dans la Région de Mopti (sur la bordure ouest du delta intérieur et en particulier dans la zone d'attente des troupeaux transhumants-Ténenkou):
 - . 50 puits-forages,
 - . surcreusement de 30 mares.

d) Moyens et budget

Le programme couvre les deux Plans 1992-1996 et 1997-2001. Il nécessitera les moyens suivants :

- des moyens en personnel national (cadres, techniciens et personnel d'appui) et en personnel international (experts et consultants spécialisés) ainsi que la main d'oeuvre locale (participation à l'exécution des ouvrages en travail à haute intensité de main d'oeuvre),
- de moyens matériels pour l'exécution des ouvrages: matériel de travaux publics (pelles hydrauliques, porte-char, camions, compacteurs, citernes à eau, brise-béton, scrapers, grues de puisatier) et matériel annexe (topographie, laboratoire). Pour le matériel de travaux publics, on pourra faire appel aux services de l'OTER (Opération de Travaux d'Equipements Ruraux/DNGR),
- des équipements en motopompes, pour puits et forages, des véhicules de liaison, petits matériels....
- des frais de fonctionnement.

Le budget (y compris les études d'exécution) est estimé ainsi (en millions de F.CFA):

1 -	Hydraulique pastorale en 3e Région (Sikasso): . 200 petits barrages (après étude de l'impact du projet CCCE) . 60 mares artificielles de 1000 m³ (le long de la RN7)	3.000 180
	Sous-total 1	3.180
2 -	Hydraulique pastorale dans l'ouest et le SO du delta intérieur (Région de Mopti) :	
	- 50 puits-forages	1.000
	- Surcreusement de 30 mares	240
	Sous-total 2	1,240

Le budget total du projet s'établit donc à 4,42 milliards de F.CFA (dont environ 6 % pour les études d'exécution, le suivi et le contrôle des travaux, soit 260 millions de F.CFA).

FICHE DE PROGRAMME B20

AMENAGEMENTS D'HYDRAULIQUE AGRICOLE A PARTIR DES EAUX DE SURFACE NON PERENNES (1994-2001)

a) Justification

Comme l'ont montré les enquêtes sur les moyens d'exhaure en 1989, il existe une demande réelle pour la création de micro ou de petits périmètres irrigués villageois. Sur les sites favorables, l'utilisation d'eaux de surface non pérennes permet, au moins dans certains cas, d'atteindre un coût de l'eau relativement bas et donc leur viabilité financière. Les projets déjà réalisés au Mali ont souvent souffert de défauts de conception, d'exécution et d'entretien par les utilisateurs qui ont limité leur multiplication. On peut cependant légitimement espérer que l'exécution de projets pilotes (voir fiches de projet A7, A8, A9 et projet PNUD/OPS), permettra d'y remédier à condition cependant que les aménagements répondent à une demande réelle des villageois et soient pris en charge par les bénéficiaires en participant effectivement aux travaux d'exécution, à la gestion et à l'entretien de leurs périmètres.

La nature, le nombre et la localisation des périmètres à réaliser dépendront de cette adhésion des villageois et des résultats des projets pilotes. Néanmoins il est souhaitable de prévoir dès à présent, en fonction de la demande probable, un financement qui permette de répondre aux initiatives qui se feront jour.

Les travaux consisteront à remettre en état les aménagements existants et à mettre en oeuvre de nouveaux aménagements.

b) Objectifs

Mettre en valeur, à l'initiative et avec la participation des villageois intéressés, les eaux de surface non pérennes pour réaliser de petits périmètres irrigués en utilisant les résultats des projets pilotes exécutés ou en exécution.

c) Stratégie et principaux résultats attendus

- * Réhabilitation d'un certain nombre d'aménagements existants après inventaire. A titre d'estimation provisoire, on admettra ici que les travaux de remise en état porteront sur 120 ouvrages de types divers.
- * Réalisation de nouveaux aménagements, y compris les études, à exécuter dans les franges sahélienne, sahélo-soudanienne et soudano-guinéenne du pays.

D'après l'information disponible sur les sites, il y a lieu de prévoir à titre d'estimation :

- en frange sahélienne :
- . 330 ensembles de digues filtrantes,
- · '80 ouvrages d'épandage de crue ;
- en frange sahélo-soudannienne :
- . 40 petits barrages;
- en frange soudano-guinéenne:
- . 80 aménagements de bas-fonds.

Les principaux résultats attendus sont :

- * Au plan technique, exécution des ouvrages et des périmètres conformément aux normes préalablement définies par les projets pilotes (Fiche de projet A7).
- * Au plan socio-économique, mise en exploitation des ouvrages et des périmètres conformément aux dispositions prévues lors de leur conception (utilisation effective des ouvrages, ouverture à tous les bénéficiaires prévus, application des modalités de gestion et de participation en travail et paiement de l'eau).
- * Amélioration des conditions de vie et des revenus des populations rurales.

d) Moyens et budget

Le programme disposera des moyens suivants :

- du personnel international (experts et consultants) et du personnel national (Direction Nationale du Génie Rural avec le concours de l'Opération des Travaux d'Equipements Ruraux) et une participation de la Direction Nationale de l'Hydraulique et de l'Energie et de la Direction Nationale de l'Agriculture,
- des matériels de travaux publics, de transport, de topographie et de laboratoire,
- des frais de fonctionnement.

Le budget, prévu sur 8 ans mais non limitatif, comportera (en millions de F.CFA):

- 1 Réhabilitation des aménagements actuels (période du 1er Plan 1994-1997) :
 - . 120 ouvrages à 2 millions de F.CFA en moyenne

20 240

Total 1 260

- 2 Nouveaux aménagements (en partie sur le 1er Plan et le reste sur le 2e, 1994-2001):
 - Frange sahélienne (Nara, Kayes, Koulikoro et Ségou, région de Mopti):
 - . 330 aménagements de 10 ha (8 petites digues filtrantes chacune) 1.150
 - . 30 terroirs villageois de 10 ha aménagés pour épandage de crue (voir fiche de projet A8)
 - Frange soudano-sahélienne (centre Kayes, centre et sud de Koulikoro et Ségou):
 - . 40 petits barrages de retenue, irrigant à l'amont environ 50 ha de riz flottant et cultures de décrue et permettant l'irrigation à l'aval de 5 ha de cultures maraîchères par puisards)1.550
 - Frange soudano-guinéenne (Sud Kayes-Sikasso)
 - 80 aménagements de bas fonds de 50 ha (10 diguettes chacun)

880

360

Total 2

3.940

Le coût total du programme sera de l'ordre de 4,2 milliards de F.CFA (dont études et suivi : 300 millions de F.CFA).

FICHE DE PROGRAMME B21

AMENAGEMENTS D'HYDRAULIQUE AGRICOLE A PARTIR DES EAUX SOUTERRAINES (1994-2001)

a) Justification

Comme l'a montré l'enquête sur les moyens d'exhaure en 1989, il existe une demande réelle des villageois (et des villageoises) pour la réalisation de micro ou de petits périmètres irrigués. Il existe des sites suffisamment favorables où les critères de rentabilité (sols, coûts de l'eau, participation villageoise, marché) peuvent être réunis, pour justifier une première étape d'investissement dans ce domaine.

Les résultats du projet A9 et du projet PNUD/OPS "Petits périmètres irrigués villageois" permettront de mieux définir les critères de réussite et de rentabilité des aménagements. Cependant, leur réalisation doit être avant tout une volonté et une demande clairement exprimées par les villageois et traduite par leur participation effective à la conception, aux travaux, à la gestion et à l'entretien de leurs périmètres.

Les travaux pourront concerner tout d'abord les Centres ruraux et semi-urbains où des marchés potentiels existent et qui sont déjà équipés de forages de débit supérieur à 5 m³/h pour un niveau de pompage inférieur à 30 mètres.

b) Objectifs

Mettre en valeur, à l'initiative et avec la participation des villageois, les eaux souterraines pour réaliser des petits périmètres irrigués en utilisant les résultats de projets pilotes.

c) Stratégie et principaux résultats attendus

La stratégie consistera en la réalisation de nouveaux aménagements à partir de forages existants sur les sites les plus favorables du point de vue de la population, des sols, du contexte socio-économique, et sur la base des résultats des projets pilotes. En première hypothèse 2.320 villages, centres ruraux et semi-urbains pourraient être équipés pour une superficie irriguée totale de 2.500 hectares environ.

Les principaux résultats attendus sont :

- * Au plan technique, mise en culture des périmètres par des moyens d'exhaure conformes aux normes définies.
- * Au plan socio-économique, mise en exploitation des ouvrages et des périmètres selon les dispositions prévues, avec la participation effective des populations concernées.
- * Amélioration des conditions de vie et de revenu des populations rurales et semiurbaines.

Le programme disposera des moyens suivants :

- du personnel national de la Direction Nationale de l'Hydraulique et de l'Energie avec participation des Directions Nationales du Génie Rural et de l'Agriculture,
- du personnel international (experts et consultants),
- des matériels de travaux de forage, de pompage et, éventuellement, de génie civil (ou sous-traitance à des entreprises privées), des équipements de transport,
- des frais de fonctionnement.

Le budget prévu sur 7 à 8 ans (1994-2001) se décompose ainsi, (en millions de F.CFA):

- 1.400 micro périmètres de 0,5 ha en moyenne (700 ha au total) avec pompe à motricité humaine débitant 30 m³/j, au coût unitaire de 0,5 million de F.CFA	700
- 600 petits périmètres de 1,5 ha en moyenne (900 ha au total) avec pompe à traction animale débitant 60 à 120 m³/j, au coût unitaire de 1 million de F.CFA	600
- 280 petits périmètres de 2 à 5 ha (700 ha au total) avec pompe diésel ou solaire débitant 150 à 200 m ³ /j, au coût unitaire de 7 millions de F.CFA	1.960
- 40 petits périmètres de 5 ha (200 ha au total), avec pompe diésel débitant	240

Le coût total du programme se monte donc à 3,5 milliards de F.CFA, y compris les études et le suivi pour environ 300 millions de F.CFA.

La superficie irriguée totale étant de 2.500 hectares, le coût moyen à l'hectare sera de 1,4 million de F.CFA.