- 45 c

11.1

£-(

84

1.4

SOUTH WEST AFRICA/NAMIBIA

DEPARTMENT OF WATER AFFAIRS

GUIDELINES FOR THE EVALUATION OF DRINKING-WATER FOR HUMAN CONSUMPTION WITH REGARD TO CHEMICAL, PHYSICAL AND BACTERIOLOGICAL QUALITY

1. INTRODUCTION

- 1.1 Water supplied for human consumption must comply with the officially approved guidelines for drinking-water quality.
- 1.2 For practical reasons the approved guidelines have been divided into three basic groups of determinants, namely:

Determinants with aesthetic or physical implications, see TABLE 1 attached.

Inorganic determinants, see TABLE 2 attached.

Bacteriological determinants, see TABLE 3 attached.

2. CLASSIFICATION OF WATER

- 2.1 The concentration of and limits for the aesthetic, physical and inorganic determinants define the group into which water will be classified. See TABLE 1 and TABLE 2 for these limits.
 - Group A: Water with an excellent quality
 - Group B: Water with good quality
 - Group C: Water with low health risk
 - Group D: Water with a higher health risk, or water unsuitable for human consumption.
- 2.2 Water should ideally be of excellent quality (Group A) or good quality (Group B), however in practice many of the determinants may fall outside the limits for these groups.
- 2.3 If water is classified as having a low health risk (Group C), attention should be given to this problem, although the situation is not critical yet.
- 2.4 If water is classified as having a higher health risk (Group D), urgent and immediate attention should be given to this matter. Since the limits are defined on the basis of average lifelong consumption, short term exposure to determinants exceeding their limits is not necessarily critical, but in the case of extremely toxic substances such as cyanide, remedial procedures should immediately be taken.

- 2.5 The group in which the water is classified is determined by the determinant which complies the least with the guidelines for the quality of drinking-water.
- 2.6 The bacteriological quality of drinking-water is also divided into four groups, namely:
 - Group A: Water which is bacteriologically very safe
 - Group B: Water which is bacteriologically still suitable for human consumption
 - Group C: Water with a bacteriological risk for human consumption which requires immediate action for rectification
 - Group D: Water which is bacteriologically unsuitable for human consumption

3. FREQUENCY FOR BACTERIOLOGICAL ANALYSIS OF DRINKING-WATER SUPPLIES

The recommended frequency for bacteriological analysis of drinking-water supplies is given below in TABLE 4.

TABLE 4: FREQUENCY FOR BACTERIOLOGICAL ANALYSIS

£ 5

POPULATION SERVED	MINIMUM FREQUENCY OF SAMPLING			
More than 100 000	twice a week			
50 000 - 100 000	once a week			
10 000 - 50 000	once a month			
Minimum analysis	once every three months			

4. PROMULGATION

The Cabinet of the Transitional Government for National Unity has approved the guidelines for evaluating drinking-water for human consumption with respect to the chemical, physical and bacteriological qualities, by Cabinet's Approval 461/85 and reporting on the evaluation of drinking-water according to the new guidelines took effect as from 1 April 1988.

SECRETARY FOR WATER AFFAIRS

TABLE 1: DETERMINANTS WITH AESTHETIC/PHYSICAL IMPLICATIONS

DETERMINANTS	UNITS	LIMITS FOR GROUPS				
		A	В	С	D*	
Colour	mg/ℓ Pt**	20	 			
Conductivity	 mS/m 25°C	1 50	300	400	400	
Total hardness	mg/l CaCO3	300	650	1 300	1 300	
Turbidity	 N.T.U.***	1	5	10	10	
Chloride	 mg/l Cl	250	600	1 200	1 200	
Chlorine (free)	 mg/l Cl	0,1-5,0	0,1-5,0	0,1-5,0	5,0	
Fluoride	mg/l F	1,5	2,0	3,0	3,0	
Sulphate	 mg/l SO3	200	600	1 200	1 200	
Copper	μg/θ Cu	500	1 000	2 000	2 000	
 Nitrate	mg∕ℓ N	10	20	40	40	
Hydrogen Sulphide	 μg/ℓ H ₂ S	100	300	600	600	
Iron	μg/ℓ Fe	100	1 000	2 000	2 000	
Manganese	μg/ℓ Mn	50	1 000	2 000	2 000	
Zinc	mg/ℓ Zn	1	5	10	10	
 pH****Hq	pH-unit	6,0-9,0	5,5-9,5	4,0-11,0	4,0-11,0	

^{*} All values greater than the figure indicated.

Pt = Platinum Units.

^{***} Nephelometric Turbidity Units.

^{****} The pH limits of each group exclude the limits of the previous group.

TABLE 2: INORGANIC DETERMINANTS

DETERMINANTS	UNITS	LIMITS FOR GROUPS			
	-	A	В	c	D*
Aluminium	μg/ℓ Al	1 50	500	1 000	1 000
Ammonia	mg∕ℓ N	1	2	i 4	1
Antimony	μg/l Sb	50	100	200	200
Arsenic	μg/ℓ As	100	300	600	600
Barium	μ g/ ℓ Ba.	500	1 000	2 000	2 000
Beryllium	μg/ℓ Be	2	5	10	10
Bismuth	μg/ℓ Bi	250	500	1 000	1 000
Boron	μg/ℓ B	500	2 000	4 000	4 000
Bromine	μg/ℓ Br	1 000	3 000	6 000	6 000
Cadmium	μg/ℓ Cd	10	20	40	i 40
Calcium	mg/ℓ Ca	1 50	200	400	400
	mg/ℓ CaCO3	_	500	1 000	1 000
Cerium	μg/ℓ Ce	1 000	2 000	4 000	4 000
Chromium	μg/ℓ Cr	100	200	400	400
Cobalt	μg/ℓ Co	250	500	1 000	1 000
Cyanide(free)		200	300	600	600
Gold	μg/ℓ Au	2	5	10	10
Iodine	μg/ℓ I	500	1 000	2 000	2 000
Lead	μg/ℓ Pb	50	100	200	200
Lithium	μg/ℓ Li	2 500	5 000	10 000	10 000
Magnesium	mg/ℓ Mg	70	100	200	200
1	mg/ℓ CaCO3	290	420	840	840
Mercury	μg/ℓ Hg	5	10	20	20
Molybdenum	μg/ℓ Mo	50	100	200	200
Nickel	μg/ℓ Ni	250	500	1 000	1 000
Potassium	mg/e K	200	400	800	800
Selenium	μg/ℓ Se	20	50	100	100
Silver	μg/ℓ Ag	20	50	100	100
Sodium	mg/ℓ Na	100	400	800	800
Tellium	μg/ℓ Te	2	5	10	10
Thallium	μg/ℓ Tl	5	10	20	20
Tin	μg/ℓ Sn	100	200	400	400
Titanium	μg/ℓ Ti	100	500	1 000	1 000
Tungsten	μg/e W	100	500	1 000	1 000
Uranium	μg/ℓ U	1 000	4 000	8 000	8 000
Vanadium	μg/ℓ V	250	500	1 000	1 000

 $^{^{**}}$ All values greater than the figure indicated.

TABLE 3: BACTERIOLOGICAL DETERMINANTS

DETERMINANTS (COUNTS)	LIMITS FOR GROUPS				
(COUNTS)		B 384	С	D*	
Standard plate counts per 1 ml	100	1 000	10 000	10 000	
Total coliform counts per 100 ml	0	10	100	100	
Faecal coliform counts per 100 ml	0	5	50	50	
E. coli counts per 100 ml	0	0	10	10	

^{*} All values greater than the figure indicated.

^{**} In 95% of the samples.

NB If the guidelines in **Group A** are exceeded, a follow-up sample should be analysed as soon as possible.