STATE OF THE UTILITIES Water, Electricity, and the Poor

UNHABITAT Energy Expert Group Meeting Modern Energy Access for Poor Urban Settlements.

4-6 December 2006, Nairobi, Kenya

ROOHI ABDULLAH

Consultant, Infrastructure Specialist UNDESA and World Bank

Outline of the presentation

What are cost recovery levels for tariffs?

Tariff insufficient to cover basic operation and maintenance (O&M) costs Tariff sufficient to cover operation and some maintenance costs	O&M costs
Tariff <i>sufficient</i> to cover operation and some maintenance costs	
Tariff sufficient to cover operation, maintenance, and more investment	St Tariff sufficient to cover O&M costs
needs Tariff sufficient to cover operation, maintenance, and mos investment needs in the face of extreme supply shortages	Tariff <i>sufficient</i> to cover full cost of modern water systems in most high-income cities
	operation, maintenance, and mo investment needs in the face of

ſ	Electricity	Residential customers	Industrial Customers
Tier 1 {	$<\!US\$0.04/kWh$	Tariff insufficient to cover basic operation and maintenance (O&M) costs	Tariff insufficient to cover basic O&M costs
Tier 2 $igg\{$	> US $$0.05/kWh$		Tariffs likely to be making a significant contribution toward capital costs, in most types of
Tier 3 {	>US\$0.0.08/kWh	Tariffs likely to be making a significant contribution toward capital costs, in most types of systems	systems
	Source: Foster and Yepes	s 2005.	

- According to GWI, covering water utilities in 132 major cities revealed that under pricing of water supply is widespread, even in high-income and upper-middle income countries.
 - 39% utilities Tier 1 and 30% in Tier 2
 - US\$0.11/m³ in LIC; US\$0.30/m³ in MIC; and US\$1.00/m³ in HIC
- According to Foster and Yepes, electricity achieves better cost recovery and targeting, and generalized under pricing is less prevalent.
 - 15% utilities Tier 1 and 44% in Tier 2
 - US\$0.05/kWh in LIC; US\$0.07 in MIC; and US\$0.12 in HIC

Evidence of cost recovery based on income

	WA ⁻	TER	ELECTRICITY					
	TIER 1	TIER 2 & 3	TIER 1	TIER 3				
Country income level	Too low to cover basic O&M	Covers O&M and partial capital	Too low to cover basic O&M	Covers O&M and partial capital				
HIC	8%	50%	0%	83%				
UMIC	39%	39%	0%	29%				
LMIC	37%	22%	27%	23%				
LIC	89%	3%	31%	25%				

- Most residential customers are not charged the full cost of the water and electricity service they receive
 - Especially in the <u>water supply</u> <u>sector</u>
 - And in **lower income countries**
- Average residential tariffs only cover O&M plus some capital costs in:
 - 3% of water utilities and 25% of electricity utilities in **low-income countries**
 - 39% of water utilities and 29% of electric utilities in <u>upper middle</u> <u>income countries</u>

HIC: High Income Countries

UMIC: Upper Middle Income Countries

LMIC:Lower Middle Income Countries

LIC: Low Income Countries

Evidence of cost recovery based on region

		WATER			ELECTRICITY			
		TIER 1	TIER 2 & 3		TIER 1	TIER 3		
Region	s	Too low to cover basic O&M	Covers O&M and partial capital	I N	Too low o cover basic O&M	Covers O&M and partial capital		
OECD		6%	51%	0%		83%		
LAC		13%	48%		0%	53%		
ECA		58%	17%		31%	31%		
EAP		53%	16%		29%	6%		
SSA		100%	0%		29%	0%		
SAR		00%	0%		33%	0%		

- Most residential customers are also not charged the full cost of the water and electricity service they receive based on regional analysis
 - Especially in the water supply sector
 - And in SSA and SAR
- Average residential tariffs only cover O&M plus some capital costs in:
 - 0% of water and electricity utilities in SSA and SAR
 - 51% of water utilities and 83% of electric utilities in **OECD Countries**

Average tariff increase

Average tariffs by region from the 2006 survey (per m³).

	Water	Wastewater	Combined	Increase
EU	\$1.47	\$1.29	\$2.68	5.1%
North America	\$0.99	\$1.11	\$2.05	6.6%
Latin America	\$1.21	\$0.25	\$1.25	0.0%
MENA	\$0.60	\$0.25	\$0.78	0.0%
Sub Saharan Afriça	\$0.52	\$0.33	\$0.74	0.0%
Asia Pacific	\$0.43	\$0.34	\$0.69	4.2%
ECA	\$0.18	\$0.12	\$0.30	3.6%
World	\$0.84	\$0.69	\$1.42	3.8%

According to GWI:

- Average water tariff around the world grew by 3.8% during 2005-06.
- The global rate of inflation is estimated to be around 5.2% during 2005-06.
- Highest tariff increase was seen in North America.
 Among the regions Asia Pacific took a lead at 4.2%.
- No change in tariff was seen in LAC, MENA and SSA.

Increasing electricity costs

- According to GWI the energy costs of Water and Wastewater utilities have increased 50-70% over the last year
- According to the IBNET data more than 50% of the utilities reported that more than 20% of their costs were associated with power consumption in 2004.
- According to OFWAT, UK is 15-18%

Electricity cost increases over time

- Median electricity costs for water utilities have been **steadily increasing** since 1995; almost **1%** per annum
- During the period <u>1995</u>-<u>2004</u>: the costs grew almost <u>9%</u>
- During the period <u>1995-</u> <u>2005</u>: the costs grew almost <u>16%</u>
- Appreciating trendline

Electricity costs

- Based on IBNET utility data from all countries,

 South Asia has the

 highest electricity costs in the region, almost 3 times that calculated for developed countries
- Utilities in East Asia
 and Pacific and Africa
 follow, almost 2 times that
 calculated for developed
 countries
- Average for all countries is **22%** and median is **18%**

Access to utility services

Percentage of the Population with Access to Improved Water Supply, Sanitation, and Electricity (and Percentage with a Household Water Connection)

	Water supply ^a		Sanitationa		Electricity ^b	
	Urban	Rural	Urban	Rural	Urban	Rural
East/Southeast Asia	92 (70)	69	71	35	99	81
South Asia	93 (53)	80	64	23	68	30
Sub-Saharan Africa	82 (39)	46	.55	26	51	7
Middle East/North Africa	96 (92)	78	90	56	99	77
East Europe/Central Asia	98 (98)	78	93	64	N/A	N/A
Latin America	96 (95)	69	84	44	98	51
OECD	100 (100)	94	100	92	100	98

Sources: IEA 2002; WHO/UNICEF 2004.

Note:

IEA = International Energy Association; OECD = Organisation for Economic Co-operation and Development; WHO = World Health Organization.

- a. Water supply and sanitation as of 2002.
- b. Electricity as of 2000.

- For every 10 people, 2 lack access to a safe water supply, 4 lack access to electricity and 5 have inadequate sanitation.
- These statistics translate into to an estimated 1.1 billion people without safe water, 2 billion without electricity, and 2.4 billion without sanitation
- Urban and rural difference

Electricity access across income groups

- Fairly large regional differences in electricity access for South Asia and Africa
- Poor have less access to electricity as the compared to the non-poor: only 5% and 22% in Africa and South Asia, respectively.
- Africa electricity access almost 50% less than South Asia.

Water access across income groups

Comparison of access for water and electricity

Small-scale private service providers (SPSPs) - Electricity

- Approximately 25% countries in the world show documented prevalence of SPSPs in electricity
- Based on estimates, about 7,000 SPSPs of electricity* serve approximately 10-50 million clients worldwide. *(supplier of network services and dealers of solar panels and other HHs generating equipment but excluding battery recharging business)

Small-scale private service providers (SPSPs) - Water and Electricity

- Approximately 45% countries in the world show prevalence of SPSPs in water, electricity, or both (documented and anecdotal)
- Based on estimates, about 7,000 SPSPs of electricity and 10,000 SPSPs serve communities up to 50,000 people around the world (urban, peri-urban or rural)

Small-scale private service providers (SPSPs) - Water price charged

Why subsidies?

- Subsidies to utility customers are a salient feature of water and electricity services worldwide, mostly because tariffs are not at cost recovery level.
 - Large transfers from general tax revenue, both capital costs and revenue shortfall.
 - Less visible form, under pricing of fuel inputs in electricity generation and of electricity and raw water inputs in water production
 - Cross subsidization, fund specific group of consumers
 - Utilities absorb financial loss from subsidies, wearing down capital stock and pushing repair and maintenance off into the future
- As a result, subsidies have in some ways become necessary to sustain utilities financially, both for water and electricity

Subsidies take many forms

- Consumption or connection subsidies
- General subsidies to all, or subsidies targeted to a subset of consumers

- Most common consumption subsidy is "quantity-based"
 - Usually an increasing block or "stepped" tariff
 - 80% of water utilities and 70% of electricity utilities

Methodology for analysis of distributional incidence of subsidies

Systematic comparison of case studies

- Nearly 80 existing and simulated subsidies
- From 13 water utilities and 27 electrical utilities from Asia, Latin America, Africa, and E.E./C.A.

Estimation of the financial value of the subsidy:

- Avg. cost of water or electricity received amount paid
- Benefit targeting indicator:
 - % of benefits going to poor / % of pop that is poor
 - <1.00 regressive; > 1.00 progressive

Determinants of targeting performance

Access rate, connection rate, targeting, subsidy per unit, quantity consumed

Existing quantity-targeted subsidies are regressive

Consumption – Why? (1)

- Access, connection, and metering
 - Many poor households are simply not eligible
- But that is not all....
- **Targeting:**

Quantity consumed is not necessarily a good indicator of poor households

- Especially in case of water
- The middle class and poor look very similar

Consumption subsidies don't work – Why? (2)

- Quantity-targeted subsidies usually provide a greater subsidy per unit to low volume consumers, but...
 - If there is a fixed fee, the smallest volume users pay the highest average price per unit
- Most existing subsidies are general subsidies to all or almost all residential customers
 - Few households pay average cost or cross-subsidize others
 - A smaller subsidy over more units of consumption = a larger total subsidy
- Can quantity-targeted subsidies be improved by tinkering with the tariff structure?
 - E.g. reducing the size of the subsidized block of an IBT

Parting thoughts: Subsidies as "pro-poor" utility policy

- Make or keep services affordable for the poor?
 - Only for the <u>connected</u> poor (with meters), who are <u>accurately identified by the targeting mechanism</u>
- What about low coverage situations?
 - Connection subsidies are most likely to reach the poor, but...
 - There may be other barriers to connections (tenure status, cost of fixtures, billing practices, good alternatives)
 - Connecting more households to a service burdened by "unfunded" consumption subsidies will only further bankrupt utilities

Parting thoughts: Prices, subsidies, and cost recovery

- There is no easy way around the need to increase levels of cost recovery if service is to be improved and expanded.
 - The removal of existing regressive subsidies is widely unpopular.
 - Improving the targeting of subsidies won't change that.
- But raising prices or securing alternative sources of subsidies are not the only possible tools:
 - Improving revenue collection
 - Reducing operating and especially capital costs
 - Removing impediments to more flexible service levels, technologies, and modes of provision

Parting thoughts: Implications for the poor

- An electricity tariff increase of 50% will increase the water production costs by 10-20%.....if 100% then by 20-40%
- Based on the above, as a result, if HH expenditure increases.....
 - Effect on poverty levels would be greater for electricity than water, would be greatest if increase is for both.
 - Water: doubling expenditure would result in 1.1% increase in poverty headcount; Electricity: almost 3%increase in poverty headcount.
 - It would take more than a 100% increase in water or electricity prices to make HHs double their expenditure, more like a price increase of 150-450% would be needed to increase expenditure by 100-300% based on price elasticity

Parting thoughts: Reducing energy costs

- Energy efficiency should be integrated as an integral component of the overall efficiency of service delivery
- Establish Monitoring and Targeting (M &T) system
 - Conduct energy survey/audits based on production and operation costs
 - Define energy as an accountable cost center (EACs)
 - Determine data management plan that feeds directly into the production cycle
- World Bank's ESMAP sponsored an Action Research applying Energy M&T "Best Practices" (extracted from earlier Pilot Assessments) to municipal water operations in Brazil
 - Current Participants:
 - Aguas do Brasil (ADB) in Petrópolis, state of Rio de Janeiro
 - Empresa Montagens de Sul Americana (EMSA) in three municipalities in the state of Tocantins
 - Other Participant replicating the model:
 - NOVACON is preparing M&T Implementation Plans in various small municipalities of Sao Paulo State
 - Also being implemented in Africa

Thank You

Most of the data presented today, unless otherwise noted, is from K. Komives, V. Foster, J. Halpern and Q. Wodon; with support from R. Abdullah. 2005. Water, electricity, and the poor: who benefits from utility subsidies? World Bank. Washington, DC and author's contribution to Kariuki and Schwartz, 2005. Small scale private service provider of water supply and electricity: A review of incidence, structure, pricing and operating characteristics. World Bank Policy Research Working Paper 3727. World Bank, Washington, DC. However, data from this source has been updated for this presentation