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Abstract In recent years, decision analysis has become an important technique in many disciplines. It provides a methodology
for rational decision making allowing for uncertainties in the outcome of several possible actions to be undertaken. An example
in urban drainage is the situation in which an engineer has to decide upon a major reconstruction of a system in order to prevent
pollution of receiving waters due to CSOs.

This paper describes the possibilities of Bayesian decision making in urban drainage. In particular, the utility of monitoring prior
to deciding on the reconstruction of a sewer system to reduce CSO emissions is studied. Our concern is with deciding whether
a price should be paid for new information and which source of information is the best choice given the expected uncertainties in
the outcome. The influence of specific uncertainties (sewer system data and model parameters) on the probability of CSO
volumes is shown to be significant.

Using the Bayes' rule, to combine prior impressions with new observations, reduces the risks linked with the planning of sewer
system reconstructions.
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Introduction

Since CSOs may cause deterioration d receiving water quality, it is generaly accepted that their
influence shoud be reduced. One obvious intervention to reduce dfeds of CSOs isto recnstruct a sewer
system in such a way that CSO emisgons diminish. Renstruction o sewer systems however, demands
major investments.

The anournt of money invested in sewer systemsis large and will remain large in the future. As decisions
on recnstruction investments are taken under substantial uncertainties, the dfectivenessof investments
in sewer systems may be questioned. For example, in the Netherlands a number of examples are known to
exist in which the reconstructions did na have the desired effed. The interventions turned ou to be ather
too small, too large or even umecessary. In current practice, decisions on investments in sewer systems
meant to reduce CSO emissons neal to be based on available measurement data that may be an
incomplete and urcertain information source

So-cdled Bayesian dedsion making provides oppatunities to solve the problem of imperfect or
unreliable information. The adility to extrad as much information as possble from avail able data is
typicd of Bayesian decision making. Dueto this abili ty the risk related to planned investmentsis reduced.
The main am of this paper is to show how to determine whether it is useful or not to carry out
measurements prior to dedding on the reconstruction d a sewer system. For this purpose, the ratio of
costs of measurements to reduced risk of inappropriate recnstruction as a result of the measurement
outcomesis of importance

The tedhnique of Bayesian dedsion making is ill ustrated with a cae study in which the problem of
choaosing whether or not to start a measurement campaign to suppat dedasion making on reconstructions
of the sewer system.

Decision making under uncertainty

Dedsions on monitoring activities related to proposed interventions are made under uncertainties.
Optimal dedsions can be obtained using Bayesian decision theory. Such dedsions are based on the
Bayes' theorem (Bayes, 1763 which calculates the probabili ty of an event on the basis of a prior estimate
of its probability and rew observations. In ather words, the Bayes rule updates subjedive beliefs on the
occurrence of an event based on new data (Figure 1). The theory of Bayesian dedasion making is
described in more detail by several authorsincluding Benjamin and Cornell (1970 and Pratt et al. (1995.
Bayesian dedsions can be used in dfferent kinds of deasion making under uncertainty. In this article
measurements prior to investments in a sewer system are studied.



The Bayes’ theorem, €. the conditionel probabilty, can be writien as
(0 ]x)= ((x10)r(0) _ (x| 0)m(0)
[rix10)lo)de  mlx)
]

in which,
n(e | x): posterior density of 6 = (8,,...,0,) after observing datax = (X, ..., X,,),
E(x |0) =likelihoodfunctionof observatiosx =(x,,..., X,) whenparameteé = (6,,...,08,) is known,
n(e) = prior densityof 6 = (8,,...,8,) beforeobservingdatax = (x,,..., X,),
n(x) = marginaldensityof observatiosx =(x,...,X,).

Using Bayes' theorem a prior distribution can be updated as oon as new observations are available. The
more new observations are used, the small er the parameter uncertainty in 6.

Although, collecting data is possble prior to

ead deasion oninvestmentsin a sewer system, prior
the possbility to get more information abou _ l ~
the system’s behaviour is rarely used. However,

data olledion pior to decisions on a sewer

system reconstruction can be used to prevent Y
disinvestments, e.g. an umecessary, too large or _

too small storm water settling tank. Monitoring data _ | Bayesian
reduces the risks that go with the investments. | analysis

If monitoring costs are sufficiently small

compared to the possble reduction d risk for +
disinvestments, monitoring prior to dedsions on

investments is worth the troude. For this posterior
purpose Bayesian dedsion making can be used | i’ E
(Korving, in prep.). For example, the Bayes -

rule has been applied with decisions on the

reduction d ﬂ_OOd Impads (Fre_nch an_d Smith, Figure 1 Bayesian analysis. The theorem of Bayes (1763)
1997, analysis of extreme river discharges provides a solution to the problem of how to learn from new data
(Chbab et al., in presg and risk-based design of

civil structures (Van Gelder, 2000.

Decision tree

A dedsion making processcan be graphically displayed as a dedsion tree (Figure 2). The decision tree
can be read as a game between the decision maker and a fictitious charader caled “chance’. The game
comprises four moves. In move 1 the decision maker chooses a measurement from a set of possble
measurements (e (N0 measurement), e;, &,...). Subsequently, “chance” reads with a measurement result
(z1, 2,...) iIn move 2. The deasion maker has no influence on this outcome. In move 3 the deasion maker
chooses an action a aintervention from a set of passble adions or interventions A (ay, ay,...). In thefinal
move “chance’ chooses a state of nature (61, 6»,...). On this choice the dedsion maker has no influence
also. The mnsequence of the sequence of chaices by the decision maker and “chance” is put together in a
so-cdled uility u(e,z,a,0).

E =set of possible measurements (g (N0 measurement), e, &,...).

Z = set of posgble outcomes of a measurement activity, g (z, z,...).

A = set of pasgble interventions avail able to dedsion maker (ay, az,...).
O = set of possble states of nature (61, 6,...).

Loss or utility function
Dedsions on interventions that reduce CSO emissons must be made under uncertainty and can be
obtained by using decision theory. As discussed before, a dedsion poblem is a problem in which the



decision maker has to choose an action a from the set of all possible decisions A. Optimal decisions can

be defined with respect to the following criterion: the criterion of minimal expected |oss.

Let L(0,a) be the loss when the decision maker chooses decision a and the state of nature turns out to be

0. The objective is to minimise this costs function. In the case of sewer system reconstructions related to

CSO reduction the loss function may consist of (1) (re)construction costs c(6,a), (2) loss due to use of

space by construction s(#,a) and (3) damage due to overflows 0(4,a). Hence the loss can be written as,
L(6,a)=c(8,a)+s(6,a)+0(8,a).

Given the loss function the decision maker can best choose the decision with minimal expected loss. A

loss function is aso called utility function.

One way to formulate aloss function is by capitalising al losses. For some losses it is difficult to trandlate

them into terms of money, e.g. the environmental damage caused by CSOs. Moreover, determination of

losses is subjective, which influences the whole decision making process. This subject demands further

research.
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Figure 2 Decision tree (after: Benjamin and Cornell, 1970). Our concern is with deciding whether a price should be paid for
new information and which source of information is the best choice.

Uncertainties

In general, the risks that evolve from a decision are based on the uncertain state of the world, 6. For CSO
emissions the world is characterised by random variables including precipitation, dimensions of the sewer
system (pipes, pumps, etc.) and resilience of the receiving water body.

The main objective of this paper is to find out if additional measurements will reduce uncertainties in a
decision making process. By determining the joint probability density of the above-mentioned random
guantities the decision problem can be formulated.

Uncertainties are either related to the randomness or variability in nature (inherent uncertainties) or
related to the lack of knowledge about a (physical) system (epistemic uncertainties) (Van Gelder, 2000).
Uncertainties influencing decisions on interventions in a sewer system comprise uncertainties in: (1)
precipitation, (2) water levelsin sewers, (3) exceedance of discharges, (4) dimensions of sewer system,
(5) model parameters in hydrodynamic model, (6) prior information on precipitation and CSO volumes,
(7) construction costs, (8) environmental damage caused by CSOs.

The connection between the uncertainties is summarised in Figure 3. Since measuring all relevant aspects
is relatively expensive and 50 years of data on the design parameter, CSO volumes, are unavailable a



hydrodynamic model neels to be used to generate probabiliti es of the design parameter. The modelling
reduces the uncertainties in the knowledge of the states of nature, the CSO volumes. If enough data on
design parameters were avail able, the modelling would na be necessary.
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Figure 3 Uncertainties influencing decisions on interventions in a sewer system.

Application of Bayesian decision making in CSO emission reduction

The Bayes' theorem can be used in the asdstance of dedsion making on reduction d CSO emisgons by
planning interventions in the sewer system (e.g. SST, RTC, etc.). In particular, the use of monitoring prior
to dedsionsoninterventionsis dudied.

As an example a c&chment areacalled ‘De Hoven' is used. This cachment (12.69ta) is stuated in the
Netherlands on the banks of the river 1Jssal in the dty of Deventer (Figure 4). The sewer system (865m°)
is of the cmbined type axd comprises one pumping station (119m%h) transporting the sewage to the
treament plant and three CSO structures. As inpu of the computations a 25 yea rainfall series (1995
1979 of KNMI isused.

i pumping station@

De Hoven

Catchment area  12.69ha;

Storage volume 865m° (= 6.82mm);
Pumping capacity 119m%h (= 0.94mm/h)

external weir 1%
gauge 200.1

gauge 17.1
external weir 3

gauge 108.1
Figure 4 Layout sewer system ‘De Hoven’ (from: Clemens, in prep.).

The cae study ‘De Hoven' isabou deciding on the volume of a storage tank to be built in order to reduce
CSO emisgons, in particular abou chocsing to carry out measurements prior to the dedsion on
interventions. Since uncertainties play an important role in the dedsion making, the goa of the
measurementsis to reducethe risk related to bulding a storage facili ty with a certain vaume.

Alternative decisions can be weighed using Bayes' rule. In this paper three aspects of Bayesian dedsion
making are singled ou. Firstly, the dedsion pocess is trandated into a decision tree with dscrete
probabiliti es to clealy ill ustrate the process of dedsion making. Secondy, urcertainties in the data on
sewer system dimensions are examined by looking at their influence on the probability distribution d
CSO volumes. Thirdly, uncertainties in the parameters of a cdi brated hydrodynamic model are examined
by performing Monte Carlo simulations drawing from the probabili ty distribution d the residues. The last
step makesit passble to study the alditional value of cdibration measurements.



Decisions on monitoring prior to the planning of interventions translated
to a simple decision tree

For the sake of simplicity in the explanation, the dedsion Table 1  Prior probabilities of states of nature
problem is smplified to a dhoice between bulding Immor 2mm  “State of nature
additional storage volume in the sewer system. Furthermore, 9.: required volume 8,: required

nature can take dther one of the two states 1mm or 2mm  -1mm volume 2mm
required storage volume. The prior probabilities of possble
states of nature ae shownin Table 1. 0.78 0.22

In case of discrete probabiliti es the Bayes' rule becomes,
Plz. 16.]Pl6 ]

Plo, 12.]=
! Plz. 16, |Pl6. |
Z k J ]
in which,
P[zk |6i] = probability of monitoringresultz, whenstateof natured. is known,
P[Hi ] = prior probability of 8.beforeobservinglataz =(z,...,z,),
P[@i | zk] = posteriorprobability of 8, afterobservinglataz =(z,..., z,),

Z P[zk 16, JP[BJ.J =marginaldensityof observatiosz, givenall statesof natured, .
J

The utiliti es of the two alternative actions are summed up in Table 2. Since utiliti es are interpreted as
risks, negative values are used. Table 2 shows that building too small a storage fadlity (still CSO
emisgons) is pendlised heavier than bulding toolarge afadlity (toolarge aea used).

Table 2 Relative utilities (in units) of Table 3  Probability of monitoring results
alternative actions (= u(e,z,a,6)) (= P[z«|6])
Decision State of nature
a; : storage  a,: storage 0:: required 0, required
volume Imm_volume 2mm volume Imm volume 2mm
0 -10 0.6 0.3
0:: required Z; : monitoring
volume 1Imm result Imm
-40 0 0.4 0.7
0,: required Z, : monitoring
volume 2mm result 2mm

The dedsion maker may chocse between either effecting spedfic monitoring adivities or no monitoring
a al. The relative @sts of the monitoring amourts to —1.5 uiits and are added to the dove-mentioned
relative utiliti es. Table 3 summarises the probabiliti es of monitoring outcomes, including for example the
acaracy of the measuring equipment.

The deasionmaking is simmarised in adecisiontree(Figure 5). The treeis analysed from right to | eft.
The posterior probabiliti es are computed with,

P[Bi |Zk] — ZP[Zk |9i]P[9i]
Z P[Zk 16, ]P[Bj]

The posterior probabiliti es in the cae study are computed with the probabiliti es from Table 1 and Table
3,

Ple,|z]=088 Plp,|z,]=067
P, 1z]=012 P, |2]=033

Afterwards, the expeded utiliti es per dternative action are computed with,
Elu(e z.a)|e z] = ) u(e z,a,6,)P[6, | 7],

and the a¢ionwith minimal lossis chaosen,



u“(e z)= mefi){E[u(e, z,a)|e 7.

The expeded uiliti es per adion are (using the probabiliti es computed above and the utiliti esin Table 2),
u(e,)=-78 u"(e.z)=-83 u(e,z,)=-63.

For further analysis, the prior probabiliti es of the outcomes of a monitoring adivity need to be known.

The estimated probabiliti es of monitoring outcomes prior to the actual monitoring are,

Pla..el= 3 Plz, 16 ]Plo] .

S0, the prior probabiliti es of the outcomes of measurement adivity e; are computed with the probabiliti es
inTables1 and 3,

Plz.e]=053 P[z,e]=047
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Figure 5 Example of decision model in which the choice is made between monitoring or no monitoring. In this particular case,
given costs and probabilities, it appears to be worthwhile to carry out measurements prior to decisions on investments in the
sewer system in order to reduce the influence of overflows on receiving waters, since E[u(e1)] = -7,2 > E[u(eo)] = -7,8.

Finally, the expeded uiliti es of either “monitoring’ or ‘no monitoring’ are,
elue)= Y uez )Pl ol

Since the optimal dedsion results in the minimal risk, the optimal choice for the decision maker is to
eff ect the measurements e, prior to taking a decision onthe volume of storage cgpadty to be built,
Elu(e )] =-7.2> EJu(e,)] = -7.8.



This exampleis grongly simplified. To be &leto use Bayesian dedasion making in pradice more insight
in the probabilities of states of nature § shoud be obtained. Besides, the prior probabiliti es of
measurement outcomes oud be known in more detail. Therefore, in the next two paragraphs the
influence of uncertainties on the probabiliti es of CSO volumes is dudied, in particular uncertainties in
sewer system data and in results of cdibrated hydrodynamic models.

Uncertainties caused by variabilities in data of sewer system dimensions

Uncertainties in data of the sewer system dimensions have implicaions for the risks related to dedsions
on interventions in the sewer system. The influence of these uncertainties on the probability of CSO
volumes is gudied by modelli ng the sewer system of ‘ De Hoven' as a reservoir with an external weir and
apump. The probabiliti es of CSO volumes make up the states of nature 6.

influence of uncertainty in pumping capacity (+/- 10%) influence of uncertainty in storage volume (+/- 10%)
on probability of CSO volume o on probability of CSO volume
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Figure 6 Influence of uncertainties in dimensions on probability distribution of CSO volume

Figure 6 shows that both a variability of 10% in pumping cgpadty and a variability of 10% in storage
volume influence probabiliti es of CSO volumes, but their influences differ. For large CSO volumes (low
probabiliti es of exceeadance) only a few observations are available. The results can be used to decide if
additional or more accurate measurements of sewer system dimensions are necessary.

The graphs in figure 6 consist of probability plots based on actua numbers of observations per class
interval. Normally, precipitation and CSO

volumes are described by probabili ty density

func’uons The parameters in such func'uons i I'T’robab|l|tyd|st‘r|but|on of residues storm August251991 -
can be estimated by various methods based - ,
on available observations. In this gudy the

method d maximum likelihood is used. A oar |
major pradica difficulty in fitting probabili ty o7t 1

distributions is that there is often a limited
amourt of data for determining extremes
(Van Gelder, 200Q. The aciated return
period is large compared with the length of
the observation period. In the Netherlands,
observations of predpitation vdumes are
avalable for a period d 45 years (1955
2000. Moreover, a mnsequence of sparse
datais that more than ore type of probabili ty ‘ |
distributions eamsto fit the observations and ST o I g1 o
ony a few can be reected based on _ _ _
goodres o it tests (Van Gelder, 2000, In  F4ure, Probabiiy, deviuton for e, resdues ovained afe
this paper the problem of fitting probability  These resuits are used as input of the Monte Carlo simulation with
functionsis not examined further. the reservoir model.
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Uncertainties in model parameters of a hydrodynamic model
Since 50 years of data on CSO volumes to
compute the probability distribution are naot
available, hydrodynamic models are used to
generate data on this performance parameter
(Figure 4). Using a hydrodynamic model
requires calibration.

The confidenceintervals of the probabiliti es of
CSO volumes are computed with Monte Carlo
smulations in  which the probability
distribution for the residues of the cdibrated
hydrodynamic model of the sewer system of
‘De Hoven' is used (Figure 7). Randamly,
values of the residues are taken from the
distribution after which CSO volumes are

Influence of uncertainty in calibrated model (Monte Carlo simulation (N=100))
(residues normally distributed: p=0.0007,6=0.01433)
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measurements of KNM I)' Figure 8 Influence of uncertainties in outcomes of calibrated model

The results are shown in Figure 8. This result  on probability distribution of CSO volume

can be used to determine whether or not

cdibration measurements are oppatune prior to dedsions on interventions in the sewer system. The
results of Monte Carlo simulations together with a lossfunction make dedsions on monitoring activities
paossble. The monitoring aims at reducing therisk in dedsions on CSO emisgon reduction.

Conclusions

From all of the &owe, what conclusions can be drawn regarding the use of Bayesian deasion making in
CSO emisgonreduction and, in particular, in relation to monitoring prior to the decision making?

The Bayesian approach dfers oppatunities for dedsion making on CSO emisgon reduction. In this
approad prior beliefs onthe state of nature are cmbined with new observations of the system behaviour.
The cae study ‘De Hoven' shows that uncertainties in data of the dimensions of a sewer system and in
results of a cali brated hydrodynamic model influence the probabili ty distribution d CSO volumes. So the
risks linked to deasions on investments in a sewer system in order to reduce CSO emissons will
diminish significantly when these uncertainties become small er. This can be atieved by using the Bayes
rule to dedde on measurements prior to panning of interventions. The presented approadh shoud be
extended with continuows probability distributions instead of a set of discrete probabiliti es. For this
purpose Monte Carlo simulations are used.

It proves to be beneficial to apply the Bayes rule to dedsions on monitoring prior to planning of sewer
system reconstructions to reduce eff ects of CSOs.
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