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Abstract In recent years, decision analysis has become an important technique in many disciplines. It provides a methodology
for rational decision making allowing for uncertainties in the outcome of several possible actions to be undertaken. An example
in urban drainage is the situation in which an engineer has to decide upon a major reconstruction of a system in order to prevent
pollution of receiving waters due to CSOs.
This paper describes the possibilities of Bayesian decision making in urban drainage. In particular, the utility of monitoring prior
to deciding on the reconstruction of a sewer system to reduce CSO emissions is studied. Our concern is with deciding whether
a price should be paid for new information and which source of information is the best choice given the expected uncertainties in
the outcome. The influence of specific uncertainties (sewer system data and model parameters) on the probability of CSO
volumes is shown to be significant.
Using the Bayes’ rule, to combine prior impressions with new observations, reduces the risks linked with the planning of sewer
system reconstructions.
Keywords Bayesian decisions, CSO reduction, monitoring, sewer system, uncertainties.

Introduction
Since CSOs may cause deterioration of receiving water quali ty, it is generally accepted that their
influence should be reduced. One obvious intervention to reduce effects of CSOs is to reconstruct a sewer
system in such a way that CSO emissions diminish. Reconstruction of sewer systems however, demands
major investments.
The amount of money invested in sewer systems is large and will remain large in the future. As decisions
on reconstruction investments are taken under substantial uncertainties, the effectiveness of investments
in sewer systems may be questioned. For example, in the Netherlands a number of examples are known to
exist in which the reconstructions did not have the desired effect. The interventions turned out to be either
too small , too large or even unnecessary. In current practice, decisions on investments in sewer systems
meant to reduce CSO emissions need to be based on available measurement data that may be an
incomplete and uncertain information source.
So-called Bayesian decision making provides opportunities to solve the problem of imperfect or
unreliable information. The abili ty to extract as much information as possible from available data is
typical of Bayesian decision making. Due to this abili ty the risk related to planned investments is reduced.
The main aim of this paper is to show how to determine whether it is useful or not to carry out
measurements prior to deciding on the reconstruction of a sewer system. For this purpose, the ratio of
costs of measurements to reduced risk of inappropriate reconstruction as a result of the measurement
outcomes is of importance.
The technique of Bayesian decision making is ill ustrated with a case study in which the problem of
choosing whether or not to start a measurement campaign to support decision making on reconstructions
of the sewer system.

Decision making under uncertainty
Decisions on monitoring activities related to proposed interventions are made under uncertainties.
Optimal decisions can be obtained using Bayesian decision theory. Such decisions are based on the
Bayes’ theorem (Bayes, 1763) which calculates the probabili ty of an event on the basis of a prior estimate
of its probabili ty and new observations. In other words, the Bayes rule updates subjective beliefs on the
occurrence of an event based on new data (Figure 1). The theory of Bayesian decision making is
described in more detail by several authors including Benjamin and Cornell (1970) and Pratt et al. (1995).
Bayesian decisions can be used in different kinds of decision making under uncertainty. In this article
measurements prior to investments in a sewer system are studied.



The Bayes’ theorem, i.e. the conditional probabilit y, can be written as,
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Using Bayes’ theorem a prior distribution can be updated as soon as new observations are available. The
more new observations are used, the smaller the parameter uncertainty in �.

Although, collecting data is possible prior to
each decision on investments in a sewer system,
the possibili ty to get more information about
the system’s behaviour is rarely used. However,
data collection prior to decisions on a sewer
system reconstruction can be used to prevent
disinvestments, e.g. an unnecessary, too large or
too small storm water settling tank. Monitoring
reduces the risks that go with the investments.
If monitoring costs are sufficiently small
compared to the possible reduction of risk for
disinvestments, monitoring prior to decisions on
investments is worth the trouble. For this
purpose Bayesian decision making can be used
(Korving, in prep.). For example, the Bayes’
rule has been applied with decisions on the
reduction of f lood impacts (French and Smith,
1997), analysis of extreme river discharges
(Chbab et al., in press) and risk-based design of
civil structures (Van Gelder, 2000).

Decision tree
A decision making process can be graphically displayed as a decision tree (Figure 2). The decision tree
can be read as a game between the decision maker and a fictitious character called “chance”. The game
comprises four moves. In move 1 the decision maker chooses a measurement from a set of possible
measurements (e0 (no measurement), e1, e2,…). Subsequently, “chance” reacts with a measurement result
(z1, z2,…) in move 2. The decision maker has no influence on this outcome. In move 3 the decision maker
chooses an action or a intervention from a set of possible actions or interventions A (a1, a2,…). In the final
move “chance” chooses a state of nature (�1� �2,…). On this choice the decision maker has no influence
also. The consequence of the sequence of choices by the decision maker and “chance” is put together in a
so-called utili ty u(e,z,a,�).

E = set of  possible measurements (e0 (no measurement), e1, e2,…).
Z = set of possible outcomes of a measurement activity, ei (z1, z2,…).
A = set of possible interventions available to decision maker (a1, a2,…).
, = set of possible states of nature (�1, �2,…).

Loss or utility function
Decisions on interventions that reduce CSO emissions must be made under uncertainty and can be
obtained by using decision theory. As discussed before, a decision problem is a problem in which the
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Figure 1 Bayesian analysis. The theorem of Bayes (1763)
provides a solution to the problem of how to learn from new data



decision maker has to choose an action a from the set of all possible decisions A. Optimal decisions can
be defined with respect to the following criterion: the criterion of minimal expected loss.
Let L(�,a) be the loss when the decision maker chooses decision a and the state of nature turns out to be
�. The objective is to minimise this costs function. In the case of sewer system reconstructions related to
CSO reduction the loss function may consist of (1) (re)construction costs c(�,a), (2) loss due to use of
space by construction s(�,a) and (3) damage due to overflows o(�,a). Hence the loss can be written as,

( ) ( ) ( ) ( )aoasacaL ,,,, θθθθ ++= .
Given the loss function the decision maker can best choose the decision with minimal expected loss. A
loss function is also called utility function.
One way to formulate a loss function is by capitalising all losses. For some losses it is difficult to translate
them into terms of money, e.g. the environmental damage caused by CSOs. Moreover, determination of
losses is subjective, which influences the whole decision making process. This subject demands further
research.
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Figure 2 Decision tree (after: Benjamin and Cornell, 1970). Our concern is with deciding whether a price should be paid for
new information and which source of information is the best choice.

Uncertainties
In general, the risks that evolve from a decision are based on the uncertain state of the world, �. For CSO
emissions the world is characterised by random variables including precipitation, dimensions of the sewer
system (pipes, pumps, etc.) and resilience of the receiving water body.
The main objective of this paper is to find out if additional measurements will reduce uncertainties in a
decision making process. By determining the joint probability density of the above-mentioned random
quantities the decision problem can be formulated.
Uncertainties are either related to the randomness or variability in nature (inherent uncertainties) or
related to the lack of knowledge about a (physical) system (epistemic uncertainties) (Van Gelder, 2000).
Uncertainties influencing decisions on interventions in a sewer system comprise uncertainties in: (1)
precipitation, (2) water levels in sewers, (3) exceedance of  discharges, (4) dimensions of sewer system,
(5) model parameters in hydrodynamic model, (6) prior information on precipitation and CSO volumes,
(7) construction costs, (8) environmental damage caused by CSOs.
The connection between the uncertainties is summarised in Figure 3. Since measuring all relevant aspects
is relatively expensive and 50 years of data on the design parameter, CSO volumes, are unavailable a



hydrodynamic model needs to be used to generate probabiliti es of the design parameter. The modelli ng
reduces the uncertainties in the knowledge of the states of nature, the CSO volumes. If enough data on
design parameters were available, the modelli ng would not be necessary.

precipitation hydrodynamic
model

CSO volumes - construction costs
- environmental damage

- sewer system data
- water levels

calibration
parameters

decision on
intervention

model calibration

model input

design parameters costs

Figure 3 Uncertainties influencing decisions on interventions in a sewer system.

Application of Bayesian decision making in CSO emission reduction
The Bayes’ theorem can be used in the assistance of decision making on reduction of CSO emissions by
planning interventions in the sewer system (e.g. SST, RTC, etc.). In particular, the use of monitoring prior
to decisions on interventions is studied.
As an example a catchment area called ‘De Hoven’ is used. This catchment (12.69ha) is situated in the
Netherlands on the banks of the river IJssel in the city of Deventer (Figure 4). The sewer system (865m3)
is of the combined type and comprises one pumping station (119m3/h) transporting the sewage to the
treatment plant and three CSO structures. As input of the computations a 25 year rainfall series (1995-
1979) of KNMI is used.

Figure 4 Layout sewer system ‘De Hoven’ (from: Clemens, in prep.).

The case study ‘De Hoven’ is about deciding on the volume of a storage tank to be built i n order to reduce
CSO emissions, in particular about choosing to carry out measurements prior to the decision on
interventions. Since uncertainties play an important role in the decision making, the goal of the
measurements is to reduce the risk related to building a storage facili ty with a certain volume.
Alternative decisions can be weighed using Bayes’ rule. In this paper three aspects of Bayesian decision
making are singled out. Firstly, the decision process is translated into a decision tree with discrete
probabiliti es to clearly ill ustrate the process of decision making. Secondly, uncertainties in the data on
sewer system dimensions are examined by looking at their influence on the probabili ty distribution of
CSO volumes. Thirdly, uncertainties in the parameters of a calibrated hydrodynamic model are examined
by performing Monte Carlo simulations drawing from the probabili ty distribution of the residues. The last
step makes it possible to study the additional value of calibration measurements.

De Hoven
Catchment area 12.69ha;
Storage volume 865m3 (= 6.82mm);
Pumping capacity 119m3/h (= 0.94mm/h)



Decisions on monitoring prior to the planning of interventions translated
to a simple decision tree
For the sake of simplicity in the explanation, the decision
problem is simpli fied to a choice between building 1mm or 2mm
additional storage volume in the sewer system. Furthermore,
nature can take either one of the two states 1mm or 2mm
required storage volume. The prior probabiliti es of possible
states of nature are shown in Table 1.

In case of discrete probabiliti es the Bayes’ rule becomes,

[ ] [ ] [ ]
[ ] [ ]∑

=

j
jjk

iik
ki PzP

PzP
zP

θθ
θθ

θ
|

|
|

in which,
[ ] known, is  nature of state when result  monitoring ofy probabilit                  | ikik zzP θθ =
[ ] ),,,(  z data observing before ofy probabilitprior                         1 nii zzP �== θθ
[ ] ),,(  z data observingafter   ofy probabilitposterior                   | 1 niki z,zzP �== θθ

[ ] [ ] . nature of states allgiven   nsobservatio ofdensity  marginal    | jk
j

jjk �zPzP =∑ θθ

The utiliti es of the two alternative actions are summed up in Table 2. Since utiliti es are interpreted as
risks, negative values are used. Table 2 shows that building too small a storage facili ty (still CSO
emissions) is penalised heavier than building too large a facili ty (too large area used).

The decision maker may choose between either effecting specific monitoring activities or no monitoring
at all . The relative costs of the monitoring amounts to –1.5 units and are added to the above-mentioned
relative utiliti es. Table 3 summarises the probabiliti es of monitoring outcomes, including for example the
accuracy of the measuring equipment.

The decision making is summarised in a decision tree (Figure 5). The tree is analysed from right to left.
The posterior probabiliti es are computed with,
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The posterior probabiliti es in the case study are computed with the probabiliti es from Table 1 and Table
3,
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Afterwards, the expected utiliti es per alternative action are computed with,
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and the action with minimal loss is chosen,

Table 2 Relative utilities (in units) of
alternative actions (= u(e,z,a,

�
i))

Decision

a1 : storage
volume 1mm

a2 : storage
volume 2mm

�
1: required

volume 1mm

0 -10

�
2: required

volume 2mm

-40 0

Table 3 Probability of monitoring results
(= P[zk| � i])

State of nature
�

1: required
volume 1mm

�
2: required

volume 2mm

z1 : monitoring
result 1mm

0.6 0.3

z2 : monitoring
result 2mm

0.4 0.7

Table 1 Prior probabilities of states of nature
State of nature
�

1: required volume
1mm

�
2: required

volume 2mm

0.78 0.22
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The expected utiliti es per action are (using the probabiliti es computed above and the utiliti es in Table 2),
( ) ( ) ( ) 3.6,;3.8,;8.7 21110 −=−=−= ∗∗∗ zeuzeueu .

For further analysis, the prior probabiliti es of the outcomes of a monitoring activity need to be known.
The estimated probabiliti es of monitoring outcomes prior to the actual monitoring are,
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So, the prior probabiliti es of the outcomes of measurement activity e1 are computed with the probabiliti es
in Tables 1 and 3,
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Figure 5 Example of decision model in which the choice is made between monitoring or no monitoring. In this particular case,
given costs and probabilities, it appears to be worthwhile to carry out measurements prior to decisions on investments in the
sewer system in order to reduce the influence of overflows on receiving waters, since E[u(e1)] = -7,2 > E[u(e0)] = -7,8.

Finally, the expected utiliti es of either ‘monitoring’ or ‘no monitoring’ are,
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k
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Since the optimal decision results in the minimal risk, the optimal choice for the decision maker is to
effect the measurements e1 prior to taking a decision on the volume of storage capacity to be built ,

( )[ ] ( )[ ] 8.72.7 01 −=>−= euEeuE .



This example is strongly simpli fied. To be able to use Bayesian decision making in practice more insight
in the probabiliti es of states of nature � should be obtained. Besides, the prior probabiliti es of
measurement outcomes should be known in more detail . Therefore, in the next two paragraphs the
influence of uncertainties on the probabiliti es of CSO volumes is studied, in particular uncertainties in
sewer system data and in results of calibrated hydrodynamic models.

Uncertainties caused by variabilities in data of sewer system dimensions
Uncertainties in data of the sewer system dimensions have implications for the risks related to decisions
on interventions in the sewer system. The influence of these uncertainties on the probabili ty of CSO
volumes is studied by modelli ng the sewer system of ‘De Hoven’ as a reservoir with an external weir and
a pump. The probabiliti es of CSO volumes make up the states of nature �.

Figure 6 shows that both a variabili ty of 10% in pumping capacity and a variabili ty of 10% in storage
volume influence probabiliti es of CSO volumes, but their influences differ. For large CSO volumes (low
probabiliti es of exceedance) only a few observations are available. The results can be used to decide if
additional or more accurate measurements of sewer system dimensions are necessary.
The graphs in figure 6 consist of probabili ty plots based on actual numbers of observations per class
interval. Normally, precipitation and CSO
volumes are described by probabili ty density
functions. The parameters in such functions
can be estimated by various methods based
on available observations. In this study the
method of maximum likelihood is used. A
major practical diff iculty in fitting probabili ty
distributions is that there is often a limited
amount of data for determining extremes
(Van Gelder, 2000). The associated return
period is large compared with the length of
the observation period. In the Netherlands,
observations of precipitation volumes are
available for a period of 45 years (1955-
2000). Moreover, a consequence of sparse
data is that more than one type of probabili ty
distributions seems to fit the observations and
only a few can be rejected based on
goodness-of-f it tests (Van Gelder, 2000). In
this paper the problem of f itting probabili ty
functions is not examined further.

Figure 6 Influence of uncertainties in dimensions on probability distribution of CSO volume

Figure 7 Probability distribution for the residues obtained after
calibration of the hydrodynamic model (from: Clemens, in prep.).
These results are used as input of the Monte Carlo simulation with
the reservoir model.



Uncertainties in model parameters of a hydrodynamic model
Since 50 years of data on CSO volumes to
compute the probabili ty distribution are not
available, hydrodynamic models are used to
generate data on this performance parameter
(Figure 4). Using a hydrodynamic model
requires calibration.
The confidence intervals of the probabiliti es of
CSO volumes are computed with Monte Carlo
simulations in which the probabili ty
distribution for the residues of the calibrated
hydrodynamic model of the sewer system of
‘De Hoven’ is used (Figure 7). Randomly,
values of the residues are taken from the
distribution after which CSO volumes are
computed with a reservoir model using a long-
term rainfall series (precipitation
measurements of KNMI).
The results are shown in Figure 8. This result
can be used to determine whether or not
calibration measurements are opportune prior to decisions on interventions in the sewer system. The
results of Monte Carlo simulations together with a loss function make decisions on monitoring activities
possible. The monitoring aims at reducing the risk in decisions on CSO emission reduction.

Conclusions
From all of the above, what conclusions can be drawn regarding the use of Bayesian decision making in
CSO emission reduction and, in particular, in relation to monitoring prior to the decision making?
The Bayesian approach offers opportunities for decision making on CSO emission reduction. In this
approach prior beliefs on the state of nature are combined with new observations of the system behaviour.
The case study ‘De Hoven’ shows that uncertainties in data of the dimensions of a sewer system and in
results of a calibrated hydrodynamic model influence the probabili ty distribution of CSO volumes. So the
risks linked to decisions on investments in a sewer system in order to reduce CSO emissions will
diminish significantly when these uncertainties become smaller. This can be achieved by using the Bayes’
rule to decide on measurements prior to planning of interventions. The presented approach should be
extended with continuous probabili ty distributions instead of a set of discrete probabiliti es. For this
purpose Monte Carlo simulations are used.
It proves to be beneficial to apply the Bayes’ rule to decisions on monitoring prior to planning of sewer
system reconstructions to reduce effects of CSOs.
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Figure 8 Influence of uncertainties in outcomes of calibrated model
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